MIL-STD-105 – Sampling Procedures and Tables for Inspection by Attributes

Subject/Scope:

This publication establishes lot or batch sampling plans and procedures for inspection by attributes. This publication shall not be "interpreted to supersede or conflict with any contractual requirements. The words "accept", "acceptance", "acceptable", etc, refer only to the contractor's use of the sampling plans contained in this standard and do not imply an agreement by the Government to accept any product. Determination of acceptability by the Government shall be as described in contractual documents. The sampling plans described in this standard are applicable to AQL's of .01 percent or higher and are therefore not suitable for applications where quality levels in the defective parts per million range can be realized.

Keywords:

Inspection, plan, defect, product, defective, curve, percent, multiple, quality, acceptance, average, std, procedure, mil, chart, sampling, process, size, standard, level, reject, critical, requirement, publication, major, minor, acceptability, accepted, drawn, protection, special, specified, production, requirement, defense, quality, military

Published: 5/10/1989

Text in blue boxes such as this one is instructional and is intended to assist you in understanding the document.

Text in red boxes such as this explains changes made to the document by The Wooden Crates Organization.

Red text has been added to the document or modifies the document since its final version was officially published.

Soft Conversion of Imperial to Metric

Conversions, when made, consider materials that are available in metric or imperial sizes rather than converting sizes exactly. For example: Panelboard (plywood) in the US is typically 4 feet X 8 feet (1220 x 2440 mm) while panelboard in metric countries is typically 1200 X 2400 mm. Since the standard was developed based on readily available materials these variations in material sizes could not have been practically considered.

The content of the document below has not been modified.

NOT MEASUREMENT SENSITIVE MIL-STD-105E 10 MAY 1989

SUPERSEDING MIL-STD-105D 29 APRIL 1963

MILITARY STANDARD

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

AMSC N/A

:

· •

1

N.

AREA QCIC

1

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DEPARTMENT OF DEFENSE Washington, DC 20301

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

1. This military standard is approved for use by all Departments and Agencies of the Department of Defense.

2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to:

Commander U.S. Army Armament Research, Development and Engineering Center ATTN: SMCAR-BAC-S/Bldg. 6 Picatinny Arsenal, NJ 07806-5000

by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or letter.

FOREWORD

1

This publication provides sampling procedures and reference tables for use in planning and conducting inspection by attributes. The sampling concept is based on the probabilistic recurrence of events when a series of lots or batches are produced in a stable environment.

This publication should be used to guide the user in the development of an inspection strategy that provides a cost effective approach to attaining confidence in product compliance with contractual technical requirements. The user is warned of the assumed risks relative to the chosen sample size and AQL.

Military specifications should not contain requirements for use of specific sampling plans, nor should they provide AQL's or LTPD's as a requirement.

Sampling plans for continuous, rather than lot inspection, are contained in MIL-STD-1235, "Single and Multi-Level Continuous Sampling Procedures and Tables for Inspection by Attributes".

CONTENTS

Page

.

4,

:

		CONTENTS	D
			Page
Paragraph	1	¢mpr	٦
	1.	SCUPE	-
	1.1	Purpose	1
	1.2	Application	1
	2.	REFERENCED DOCUMENTS	1
	• •		•
	2.1	Not applicable	1
	3		1
	5.	DEF INTITONS	-
	3.1	Acceptable Quality Level (AOL)	2
	3.2	Average Outgoing Quality (AOQ)	2
	3.3	Average Outgoing Quality Limit (AOQL)	2
	3.4	Classification of Defects	2
	3.5	Critical Defect	2
	3.6	Critical Defective	2
	3.7	Defect	2
	3.8	Defective	3
	3.9	Defects Per Hundred Units	3
	3.10	Inspection	3
	3.11	Inspection by Attributes	3
	3.12	Lot or Batch	3
	3.13	Lot or Batch Size	3
	3.14	Major Defect	3
	3.15	Major Defective	3
	3.16	Minor Defect	3
	3.17	Minor Defective	3
	3.18	Percent Defective	4
	3.19	Process Average	4
	3.20	Sample	. 4
	3.21	Sample Size Code Letter	4
	3.22	Sampling Plan	4
	3.23	Unit of Product	4
	4.	GENERAL REQUIREMENTS	4
		1	
	4.1	Written Procedures	4
	4.2	Nonconformance	4
	4.3	Formation and Identification of Lots or Batches	5
	4.4	AQL.	5
	4.4.1	AQL Use	5
	4.4.2	Limitation	5
	4.4.3	Choosing AQLs	5

•

•

.

CONTENTS - Continued.

•

Page

Paramaph			
rarayrafa,	4.5	Sampling	5
	4 5 1	Representative Sampling	5
	4 5 2	Time of Campling	5
	1.5.2	Double of Multiple Sampling	5
	4.5.5	Tombre of Milliple Salpring	2
	4.0	Inspection Procedures	0
	4.7	Switching Procedures	Ø
	4.7.1	Normal to Tightened	6
	4.7.2	Tightened to Normal	6
	4.7.3	Normal to Reduced	6
	4.7.4	Reduced to Normal	6
	4.8	Discontinuation of Inspection	7
	4.9	Sampling Plans	7
	4.9.1	Inspection Level	7
	4.9.2	Code Letters	7
	4.9.3	Obtaining Sampling Plan	7
	4.9.4	Types of Sampling Plans	8
	4.10	Determination of Acceptability	8
	4.10.1	Percent Defective Inspection	8
	4.10.1.1	Single Sampling Plan	8
	4.10.1.2	Double Sampling Plan	8
	4.10.1.3	Multiple Sampling Plan	8
	4.10.1.4	Special Procedure for Reduced Inspection	8
	4.10.2	Defects Per Hundred Units Inspection.	9
	4.11	Limiting Quality Protection.	.9
	4.12	Qurves.	9
	4.12.1	Operating Characteristic Ourves	ģ
	4.12.2	Average Sample Size Ourves	á
			2
	5. TAB	LES	11
Table			
TADIC	Τ.	Sample Size Code Letters	13
	TT-2	Single Sampling Plans for Normal	10
	** G ,	Increation (Master table)	14
	TT-R	Single Sampling Plans for Tight and	14
		Incompany rais for rightened	16
	TT-0	Single Sampling Dippe for Defined	15
	11-7.	Jamping Flans for Reduced	10
	TTT N	Inspection (Master (able)	10
	111-A.	Double Sampling Plans for Normal	
		Inspection (Master table)	17
	111 - B.	Double Sampling Plans for Tightened	
		Inspection (Master table)	18
	111 - C.	Double Sampling Plans for Reduced	
		Inspection (Master table)	19

.

•

.

•

CONTENTS - Continued.

Table

•

.

/

. /

IV-A.	Multiple Sampling Plans for Normal	
	Inspection (Master table)	20
IV-B.	Multiple Sampling Plans for Tightened	
	Inspection (Master table)	22
IV-C.	Multiple Sampling Plans for Reduced	
	Inspection (Master table)	24
V-A.	Average Outgoing Quality Limit Factors for	~ ~
	Normal Inspection (Single Sampling)	26
V-B.	Average Outgoing Quality Limit Factors for	~~
	Tightened Inspection (Single Sampling)	21
VI-A.	Limiting Quality (in Percent Defective) for	
	which a Pa = 10% (for Normal Inspection, Single Sampling)	20
<u>и</u> т_Р	Limiting Quality (in Defects our Wordred	20
VI-B.	Initely for which the Pa - 10% (for Normal	
	Inspection Single Sampling)	29
VTT-a	limiting Quality (in Percent Defective) for	25
VII A.	which the $Pa = 5$ (for Norma) Inspection	
•	Single Sampling)	30
VTI-B.	Limiting Quality (in Defects per Hundred)	
	Units) for which the $Pa = 5\%$ (for Normal	
	Inspection, Single Sampling)	31
VIII.	Limit Numbers for Reduced Inspection	32
· IX.	Average Sample Size Curves for Double and	
	Multiple Sampling	33
Sampling Plans	and Operating Characteristic	
Curves (and	Data) for:	
X-A.	Sample Size Code Letter A	34
Х-В.	Sample Size Code Letter B	36
х-с.	Sample Size Code Letter C	38
X-D.	Sample Size Code Letter D	40
X-E.	Sample Size Code Letter E	42
X-F.	Sample Size Code Letter F	44
X-G.	Sample Size Code Letter G	-46
х-н.	Sample Size Code Letter H	48
X-J.	Sample Size Code Letter J	50
Х-К.	Sample Size Code Letter K	52
X-L.	Sample Size Code Letter L	54
, Х-М.	Sample Size Code Letter M	56
X-N.	Sample Size Code Letter N	58
X-P.	Sample Size Code Letter P	60
x- <u>0</u> .	Sample Size Code Letter Q	62
X- R.	Sample Size Code Letter R	64

CONTENTS - Continued.

)

٠

•

٠

.

			Page
	x−s.	Sample Size Code Letter S	66
Paragraph	6.	NOTES	67
	6.1 6.2 6.3	Intended Use Subject Term (key word) Listing Changes from Previous Issue	์ ត ត
		CONCLUDING MATERIAL	68

.

• .

.

• .

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

1. SCOPE

1.1 <u>Purpose</u>. This publication establishes lot or batch sampling plans and procedures for inspection by attributes. This publication shall not be interpreted to supercede or conflict with any contractual requirements. The words "accept", "acceptance", "acceptable", etc, refer only to the contractor's use of the sampling plans contained in this standard and do not imply an agreement by the Government to accept any product. Determination of acceptability by the Government shall be as described in contractual documents. The sampling plans described in this standard are applicable to AQL's of .01 percent or higher and are therefore not suitable for applications where quality levels in the defective parts per million range can be realized.

1.2 <u>Application</u>. Sampling plans designated in this publication are applicable, but not limited, to inspection of the following:

- a. End items.
- b. Components and raw materials.
- c. Operations or services.
- d. Materials in process.
- e. Supplies in storage.
- f. Maintenance operations.
- g. Data or records.
- h. Administrative procedures.

These plans are intended primarily to be used for a continuing series of lots or batches. The plans may also be used for the inspection of isolated lots or batches, but, in this latter case, the user is cautioned to consult the operating characteristic curves to find a plan which will yield the desired protection (See 4.11).

- 2. REFERENCED DOCUMENTS
- 2.1 Not applicable.
- 3. DEFINITIONS

3.1 <u>Acceptable Quality Level (AQL)</u>. When a continuous series of lots is considered, the AQL is the quality level which, for the purposes of sampling inspection, is the limit of a satisfactory process average (See 3.19).

NOTE: A sampling plan and an AQL are chosen in accordance with the risk assumed. Use of a value of AQL for a certain defect or group of defects indicates that the sampling plan will accept the great majority of the lots or batches provided the process average level of percent defective (or defects per hundred units) in these lots or batches be no greater than the designated value of AQL. Thus, the AQL is a designated value of percent defective (or defects per hundred units) for which lots will be accepted most of the time by the sampling procedure being used. The sampling plans provided herein are so arranged that the probability of acceptance at the designated AQL value depends upon the sample size, being generally higher for large samples than for small ones, for a given AQL. The AQL alone does not identify the chances of accepting or rejecting individual lots or batches but more directly relates to what might be expected from a series of lots or batches, provided the steps indicated in this publication are taken. It is necessary to refer to the operating characteristic curve of the plan to determine the relative risks.

3.2 <u>Average Outgoing Quality (AOQ)</u>. For a particular process average, the AOQ is the average quality of outgoing product including all accepted lots or batches, plus all rejected lots or batches after the rejected lots or batches have been effectively 100 percent inspected and all defectives replaced by non-defectives.

3.3 <u>Average Outgoing Quality Limit (AOQL)</u>. The AOQL is the maximum AOQ for a given acceptance sampling plan. Factors for computing AOQL values are given in Table V-A for each of the single sampling plans for normal inspection and in Table V-B for each of the single sampling plans for tightened inspection.

3.4 <u>Classification of Defects</u>. A classification of defects is the enumeration of possible defects of the unit of product classified according to their seriousness.

3.5 <u>Critical Defect</u>. A critical defect is a defect that judgement and experience indicate would result in hazardous or unsafe conditions for individuals using, maintaining, or depending upon the product, or a defect that judgement and experience indicate is likely to prevent performance of the tactical function of a major end item such as a ship, aircraft, tank, missile, or space vehicle.

3.6 <u>Critical Defective</u>. A critical defective is a unit of product which contains one or more critical defects and may also contain major and/or minor defects.

3.7 <u>Defect</u>. A defect is any nonconformance of the unit of product with specified requirements.

3.8 <u>Defective</u>. A defective is a unit of product which contains one or more defects.

3.9 <u>Defects per Hundred Units</u>. The number of defects per hundred units of any given quantity of units of product is one hundred times the number of defects contained therein (one or more defects being possible in any unit of product) divided by the total number of units of product, i.e.:

Defects	per	=	Number	of	defect	:s_	<u>x</u>	100
hundred	units		Number	of	units	in	spec	ted

1

ì.

3.10 <u>Inspection</u>. Inspection is the process of measuring, examining, testing, or otherwise comparing the unit of product with the requirements.

3.11 <u>Inpection by Attributes.</u> Inspection by attributes is inspection whereby either the unit of product is classified simply as defective or non-defective, or the number of defects in the unit of product is counted, with respect to a given requirement or set or requirements.

3.12 Lot or Batch. The term lot or batch shall mean "inspection lot" or "inspection batch", i.e., a collection of units of product from which a sample is to be drawn and inspected and may differ from a collection of units designated as a lot or batch for other purposes (e.g., production, shipment, etc.).

3.13 Lot or Batch Size. The lot or batch size is the number of units of product in a lot or batch.

3.14 <u>Major Defect</u>. A major defect is a defect, other than critical, that is likely to result in failure, or to reduce materially the usability of the unit of product for its intended purpose.

3.15 <u>Major Defective</u>. A major defective is a unit of product which contains one or more major defects, and may also contain minor defects but contains no critical defect.

3.16 <u>Minor Defect</u>. A minor defect is a defect that is not likely to reduce materially the usability of the unit of product for its intended purpose, or is a departure from established standards having little bearing on the effective use or operation of the unit.

3.17 <u>Minor Defective</u>. A minor defective is a unit of product which contains one or more minor defects but contains no critical or major defect.

3.18 <u>Percent Defective</u>. The percent defective of any given quantity of units of product is one hundred times the number of defective units of product contained therein divided by the total number of units of product, i.e.:

Percent Defective	=	Number of defectives x 10	0
		Number of units inspected	

3.19 <u>Process Average</u>. The process average is the average percent defective or average number of defects per hundred units (whichever is applicable) of product submitted by the supplier for original inspection. Original inspection is the first inspection of a particular quantity of product as distinguished from the inspection of product which has been resubmitted after prior rejection.

3.20 <u>Sample</u>. A sample consists of one or more units of product drawn from a lot or batch, the units of the sample being selected at random without regard to their quality. The number of units of product in the sample is the sample size.

3.21 <u>Sample Size Code Letter</u>. The sample size code letter is a device used along with the AQL for locating a sampling plan on a table of sampling plans.

3.22 <u>Sampling Plan</u>. A sampling plan indicates the number of units of product from each lot or batch which are to be inspected (sample size or series of sample sizes) and the criteria for determining the acceptability of the lot or batch (acceptance and rejection numbers).

3.23 Unit of Product. The unit of product is the thing inspected in order to determine its classification as defective or non-defective or to count the number of defects. It may be a single article, a pair, a set, a length, an area, an operation, a volume, a component of an end product, or the end product itself. The unit of product may or may not be the same as the unit of purchase, supply, production, or shipment.

4. GENERAL REQUIREMENTS

4.1 Written Procedures. Written procedures are ordinarily developed and made available for the Government representative's review, upon request. When the written procedures indicate use of this standard, they shall comply with the requirements of this standard and reference appropriate parts as necessary.

4.2 <u>Nonconformance</u>. The extent of nonconformance of product shall be expressed either in terms of percent defective or in terms of defects per hundred units. 4.3 Formation and Identification of Lots or Batches. The product shall be assembled into identifiable lots, sublots, batches, or in such other manner as may be prescribed. Each lot or batch shall, as far as is practicable, consist of units of product of a single type, grade, class, size, and composition, manufactured under essentially the same conditions, and at essentially the same time. The lots or batches shall be identified by the contractor and shall be kept intact in adequate and suitable storage space.

4.4 AQL.

÷

1

4.4.1 <u>AQL Use</u>. The AQL, together with the Sample Size Code Letter, is used for indexing the sampling plans provided herein.

4.4.2 <u>Limitation</u>. The selection or use of an AQL shall not imply that the contractor has the right to supply any defective unit of product.

4.4.3 <u>Choosing AQLs</u>. Different AQLs may be chosen for groups of defects considered collectively, or for individual defects. An AQL for a group of defects may be chosen in addition to AQLs for individual defects, or subgroups, within that group. AQL values of 10.0 or less may be expressed either in percent defective or in defects per hundred units; those over 10.0 shall be expressed in defects per hundred units only.

4.5 Sampling.

4.5.1 <u>Representative (Stratified) Sampling</u>. When appropriate, the number of units in the sample shall be selected in proportion to the size of sublots or sub-batches, or parts of the lot or batch, identified by some rational criterion. When representative sampling is used, the units from each sublot, sub-batch or part of the lot or batch shall be selected at random.

4.5.2 <u>Time of Sampling</u>. A sample may be drawn after all the units comprising the lot or batch have been assembled, or sample units may be drawn during assembly of the lot or batch, in which case the size of the lot or batch will be determined before any sample units are drawn. If the sample units are drawn during assembly of the lot or batch, and if the rejection number is reached before the lot is completed, that portion of the lot already completed shall be rejected. The cause of the defective product shall be determined and corrective action taken, after which a new lot or batch shall be begun.

4.5.3 <u>Double or Multiple Sampling</u>. When double or multiple sampling is to be used, each sample shall be selected over the entire lot or batch.

4.6 <u>Inspection Procedures</u>. Normal inspection will be used at the start of inspection. Normal, tightened or reduced inspection shall continue unchanged for each class of defects or defectives on successive lots or batches except where the switching procedures given below require change. The switching procedures shall be applied to each class of defects or defectives independently.

4.7 Switching Procedures.

4.7.1 <u>Normal to Tightened</u>. When normal inspection is in effect, tightened inspection shall be instituted when 2 out of 2, 3, 4, or 5 consecutive lots or batches have been rejected on original inspection (i.e., ignoring resubmitted lots or batches for this procedure).

4.7.2 <u>Tightened to Normal</u>. When tightened inspection is in effect, normal inspection shall be instituted when 5 consecutive lots or batches have been considered acceptable on original inspection.

4.7.3 <u>Normal to Reduced</u>. When normal inspection is in effect, reduced inspection shall be instituted provided that all of the following conditions are satisfied:

a. The preceding 10 lots or batches (or more, as indicated by the note to Table VIII) have been on normal inspection and all have been accepted on original inspection; and

b. The total number of defectives (or defects) in the samples from the preceding 10 lots or batches (or such other number as was used for condition "a" above) is equal to or less than the applicable number given in Table VIII. If double or multiple sampling is in use, all samples inspected should be included, not "first" samples only; and

c. Production is at a steady rate; and

d. Reduced inspection is considered desirable.

4.7.4 <u>Reduced to Normal</u>. When reduced inspection is in effect, normal inspection shall be instituted if any of the following occur on original inspection:

a. A lot or batch is rejected; or

b. A lot or batch is considered acceptable under the procedures of 4.10.1.4, or

c. Production becomes irregular or delayed; or

d. Other conditions warrant that normal inspection shall be instituted.

4.8 <u>Discontinuation of Inspection</u>. If the cumulative number of lots not accepted in a sequence of consecutive lots on original tightened inspection reaches five, the acceptance procedures of this standard shall be discontinued. Inspection under the provisions of this standard shall not be resumed until corrective action has been taken. Tigthened inspection shall then be used as if 4.7.1 had been invoked.

4.9 Sampling Plans.

4.9.1 <u>Inspection Level</u>. The inspection level determines the relationship between the lot or batch size and the sample size. The inspection level to be used for any particular requirement will be as prescribed by the contractor's written procedures. Three inspection levels: I, II, and III, are given in Table I for general use (see 4.1). Normally, Inspection Level II is used. However, Inspection Level I may be used when less discrimination is needed, or Level III may be used for greater discrimination. Four additional special levels: S-1, S-2, S-3, and S-4, are given in the same table and may be used where relatively small sample sizes are necessary and large sampling risks can or must be tolerated.

NOTE: In the selection of inspection levels S-1 to S-4, care must be exercised to avoid AQLs inconsistent with these inspection levels. In other words, the purpose of the special inspection levels is to keep samples small when necessary. For instance, the code letters under S-1 go no further than D, equivalent to a single sample of size 8, but it is of no use to choose S-1 if the AQL is 0.10 percent for which the minimum sample is 125.

4.9.2 <u>Code Letters</u>. Sample sizes are designated by-code letters. Table I shall be used to find the applicable code letter for the particular lot or batch size and the prescribed inspection level.

4.9.3 <u>Obtaining Sampling Plan</u>. The AQL and the code letter shall be used to obtain the sampling plan from Tables II, III, or IV. When no sampling plan is available for a given combination of AQL and code letter, the tables direct the user to a different letter. The sample size to be used is given by the new code letter, not by the original letter. If this procedure leads to different sample sizes for different classes of defects, the code letter corresponding to the largest sample size derived may be used for all classes of defects. As an alternative to a single sampling plan with an acceptance number of 0, the plan with an acceptance number of 1 with its correspondingly larger sample size for a designated AQL (where available), may be used. 4.9.4 <u>Types of Sampling Plans</u>. Three types of sampling plans: Single, Double, and Multiple, are given in Tables II, III, and IV, respectively. When several types of plans are available for a given AQL and code letter, any one may be used. A decision as to type of plan, either single, double, or multiple, when available for a given AQL and code letter, will usually be based upon the comparison between the administrative difficulty and the average sample sizes of the available plans. The average sample size of multiple plans is less than for double (except in the case corresponding to single acceptance number 1) and both of these are always less than a single sample size (see Table IX). Usually the administrative difficulty for single sampling and the cost per unit of the sample are less than for double or multiple.

4.10 Determination of Acceptability.

4.10.1 <u>Percent Defective Inspection</u>. To determine acceptability of a lot or batch under percent defective inspection, the applicable sampling plan shall be used in accordance with 4.10.1.1, 4.10.1.2, 4.10.1.3, and 4.10.1.4.

4.10.1.1 <u>Single Sampling Plan</u>. The number of sample units inspected shall be equal to the sample size given by the plan. If the number of defectives found in the sample is equal to or less than the acceptance number, the lot or batch shall be considered acceptable. If the number of defectives is equal to or greater than the rejection number, the lot or batch shall be rejected.

4.10.1.2 <u>Double Sampling Plan</u>. A number of sample units equal to the first sample size given by the plan shall be inspected. If the number of defectives found in the first sample is equal to or less than the first acceptance number, the lot or batch shall be considered acceptable. If the number of defectives found in the first sample is equal to or greater than the first rejection number, the lot or batch shall be rejected. If the number of defectives found in the first sample is between the first acceptance and rejection numbers, a second sample of the same size shall be inspected. The number of defectives found in the first and second samples shall be accumulated. If the cumulative number of defectives is equal to or less than the second acceptance number, the lot or batch shall be considered acceptable. If the cumulative number of shall be considered acceptable. If the cumulative number of defectives is equal to or greater than the second rejection number, the lot or batch shall be considered acceptable. If the cumulative number of defectives is equal to or greater than the second rejection number, the lot or batch shall be rejected.

4.10.1.3 <u>Multiple Sample Plan</u>. Under multiple sampling, the procedure shall be similar to that specified in 4.10.1.2, except that the number of successive samples required to reach a decision may be as many as seven.

4.10.1.4 <u>Special Procedure for Reduced Inspection</u>. Under reduced inspection, the sampling procedure may terminate without either acceptance or rejection criteria having been met. In these circumstances, the lot or batch will be considered acceptable, but normal inspection will be reinstated starting with the next lot or batch (see 4.7.4.b).

4.10.2 <u>Defects per Hundred Units Inspection</u>. To determine the acceptability of a lot or batch under defects per hundred units inspection, the procedure specified for percent defective inspection above shall be used, except that the word "defects" shall be substituted for "defectives".

4.11 Limiting Quality Protection. The sampling plans and associated procedures given in this publication were designed for use where the units of product are produced in a continuing series of lots or batches over a period of time. However, if the lot or batch is of an isolated nature, it is desirable to limit the selection of sampling plans to those, associated with a designated AOL value, that provide not less than a specified limiting quality protection. Sampling plans for this purpose can be selected by choosing a Limiting Quality (LQ) and a consumer's risk to be associated with it. Tables VI and VII give values of LQ for the the commonly used consumer's risks of 10 percent and 5 percent respectively. If a different value of consumer's risk is required, the O.C. curves and their tabulated values may be used. The concept of LQ may also be useful in specifying the AQL and Inspection Levels for a series of lots or batches, thus fixing minimum sample size where there is some reason for avoiding (with more than a given consumer's risk) more than a limiting proportion of defectives (or defects) in any single lot or batch.

4.12 Qurves.

4.12.1 Operating Characteristic Ourves. The operating characteristic curves for normal inspection, shown in Table X, indicate the percentage of lots or batches which may be expected to be accepted under the various sampling plans for a given process quality. The curves shown are for single sampling; curves for double and multiple sampling are matched as closely as practicable. The O.C. curves shown for AQLs greater than 10.0 are based on the Poisson distribution and are applicable for defects per hundred units inspection; those for AOLs of 10.0 or less and sample sizes of 80 or less are based on the binomial distribution and are applicable for percent defective inspection; those for AQLs of 10.0 or less and sample sizes larger than 80 are based the Poisson distribution and are applicable either for defects per hundred units inspection, or for percent defective inspection (the Poisson distribution being an adequate approximation to the binomial distribution under these conditions). Tabulated values, corresponding to selected values or probabilities of acceptance (Pa, in percent) are given for each · of the curves shown, and, in addition, for tightened inspection, and for defects per hundred units for AQLs of 10.0 or less and sample sizes of 80 or less.

4.12.2 <u>Average Sample Size Curves</u>. Average sample size curves for double and multiple sampling are in Table IX. These show the average sample sizes which may be expected to occur under the various sampling plans for given levels of process quality. The curves assume no curtailment of inspection and are approximate to the extent that they are based upon the Poisson distribution, and that the sample sizes for double and multiple sampling are assumed to be 0.631n and 0.25n respectively, where n is the equivalent sample size.

•

.

.

.

1

.

SECTION 5

• .

TABLES AND CURVES

· .

•

•

TABLE 1----Sample size code letters

.

.

(see 4.9.1 and 4.9.2)

•

······			_		÷		_	MIL	-51	$D = \Pi$	1 <u>5P</u>					
levela	H	£1	с -	G	ш 	لد,	0	Ξ	~	×	د	W	z	د.	0	Ľ
ral Inspection	=		B	U	۵	٤J	٤.,	J	=	-	×	د	Z	z	Ч	0
Gene	-	<	۲	8	υ	IJ	ŋ	<u>س</u>	<u>ن</u> ے	υ	Ξ	-	¥	ب	W	z
	1-5	<	A	8	υ	υ	D.	- -	ш	۲.	U	U	Ŧ	_	-	Х
ection levels	S-3	×	<	a	8	υ	U	0	0.	ы	3	<u>ن</u> ــــــــــــــــــــــــــــــــــــ	íد ا	U	C	=
Special inap	S-2	<	~	~	B	£	8	U	U	U	a	2	0	ш	ш	œ
	S.I	V	<	<	<	8	B	æ	æ	U	U	υ υ	U	۵	<u> </u>	a
	5 5 6	6	15	ห	<u> </u>	8	150	280	500	1200	3200	10000	35000	15000	50000	over
		3	9	9	נס	9	ţo	q	9	2	2	9	ţo	2	b b	pue
	3	3	6	16	8	51	16	151	នេ	201	1201	3201	1000 t	35001	150001	200001

CODE LETTERS

A Q AI f ¢

TABLE II-A—Single sampling plans for normal inspection (Master table)

٠

-

·

	MIL-SID-105E													
:	₹ [8	2	= 2 4									
•	9.9		- 3	R. A.	2 2 2	1								
,	g			Re Ac	12 12 12 12 12 12 12 12 12	3 1								
4	n n		4	te Ac	2 2 2	3 (
	6		ង	Ac F	31 10	834								
	8		3	Ac Be					 					
(6)	<u>°</u>		8	۲. ۲	5 6 7 8 10 11	2 H H								
labi			3	Le He	***	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	<							
ler			3	i de la constante da la consta	~ ~ ~	• 1 •	n	····						
Mas			x	1 ar	~ ~ ~	9 8 1	<u> </u>							
נ מ				ReAc	<u> </u>	* * *	= = X = = = = =	<u></u>						
ctro				¥ ¥	<u>~~~~</u>	n 9 H	e 1 2 1 2 1	N						
stpe		ction)	ļ		- <u>/ -</u>	~ ~ ~	× <u>0</u> =							
		1 inspec		¥	- 99	- ~ ~	5 ~ Q							
rma		(serme	\$	Å.	\$.\$	\$	m'm n	2 1 N 2 1 N	<					
201		Level	2	Ac Re		\$\$-		- 11 E	¤					
for		Quality	2	te Re		- (¢¢)	2 3	5 6 7 8 10 11	5 H H					
sue		-preble	9	e u		=>:6	5)- ~	 	2 2 2 2 2 2					
þl		¥	3	ř.)	60-	2 7		8				
ling	i		8	ž ž		<u>\</u>	- 60	~ ~ ~		1 12				
dun	:		R	i i i i i i i i i i i i i i i i i i i		V	- <u>\</u> - <u>\</u> - <u>\</u>	5~7						
e 56			5	<u></u>			<u></u>	<u> </u>	n n					
ingl			-	¥ ¥			/ •	<u> </u>	2 m 3					
<u>ک</u>			1.0					<u> - \7 \</u>						
ż			000	4 H				<u>=> • {}</u>	5)					
		ł	0000	¥ ¥				\equiv	QQ -	, N				
BLI			\$100	Ac Re				\Longrightarrow	$\overline{2}$	-				
ТA			510.0	Ĕ					⇒∶⊱					
			810	Å Å										
		┢─	<u>ٿ</u> ا ،،	<u> </u>			339	<u>88</u> ≏	883	8				
		 	1					= N A 	0 4 N	8				
			Sumple	and a second	< 8 (0 = -	* J *	200	«				
SIN	GLE													
NO	RMA	۹L j			1.									

Use first sensiting plus below ensure. If comple also regult, an excendia, los or barch also, do 100 percent inspection.
Lua first complexe place above ensure.
Ac a Acceptose comban.
Re a Rejection comban.

TABLE 11-B --- Single sampling plans for sightened inspection (Master table)

(see 4.9.3 and 4.9.4)

	8	4 7		
	3	چ ۲	2 2 3	¢
	8	Ł	218	<u>*</u>
	ង	2	• • •	
	81	2	** 2	
	8	e Re		
	3		~~~	
	3			
	R	c Re	\$]]	
	15	c Re		
	2	4 4 1		
er time)	53	- 	\$.=	
	9	k Re	Ъ.	
ie felgtee	2	A A A		
1, 1,	2	4		
10	<u>•</u>	ic Re A		
Acc age a	3	c Re		
	3	4 8 9		
	10	۲ ۲ ۲		
	e.:	2		
	0.0			
	100			
	8	4		
	200			
	510.0	2		
	010.0	4		
⊢	 ; ;			2
\vdash]1 			
	ţ=ļ	ł.	< 0 0	0

MIL-SID-105E

SI

The first sampling plue below once. If sample oice equals ar exceedulat at back rise, do 100 percent inspection.
The first sampling plus dama once.
Ac = Acceptace sample.
Rejection author.

•

٩) A Q Pre-٣ c <

TABLE II-C-Single sampling plans for reduced inspection (Master table)

	9.4)		1000	le Ru	16 0	л а (<u>,</u>]
	4.9		ŝ	e i	8	2	7	2	_	_	_	_						_			4
	and		8	* #	15 21	15 21	-	2	7		_										-
	3	·	*	۲ ۲		=	≛	12 21	<u>*</u>		_						-				-
	4.9		<u>8</u>	¥	2	9	=	=	1 21	<u> </u>	_	_			_	<u> </u>]	4
	See		3	×	-	~	-	<u> </u>	<u> </u>	1	Ξ	Ξ									
(a)	Ĵ		8	<u>+</u> +	-	•	5	-	2	<	_	=			=						
lab			ş				-	5	7 10	[[0]	4	_	_		_						
ster			\$	Ac Re	-	•	~		~	2 10	51 03	4									7
(Ma			ห	Ac Re	-		-	~	•	5	1 10	01	¢					_			
ion				2	c):	-	-	2 5		1 5	2	음 역	4			_			=	
pect			2	* 		⇒	2 0	-	-	25	9 C	5	01 2	10 13	4	_	-	_		=	
SUI		ret loal	6.5			$\langle \mathbf{b} \rangle$	⇒	0 2	1 3	1 4	2 5	-	5	01 ~	[[0]	<₽			_		
nced		, in the second s	3			\$[Ŷ	\$	0 2		-	2	-	5	2 2	2 2	4				
redi		Ē	22			⇒	-	þ	⇔	0		-	2	-	• •	۹ ۲	10	(=			
for		1	<u>ت</u>				$\left \right\rangle$	- 0	⊳	\$	0 2	-	1 4	2 5	3 6	•	1 10	10 13	<		
SIL		- 0 - 19	0:		ן דער אין		_	\$		¢	⇔	2 0	[]	• •	2 5	3 6 1	•	7 10	2	Û	
pla		Accept	3				_		⇒	•	k	ц Ч	0 2	1 3	-	2 5		89 ; VI 1	9 ~ \		
ing			0,40					_	_	⇒	-	$\overline{\diamond}$	\$	~	-	+ -	2 5	-	.	10.	
im þi			8.0 2		ž (_					≒>	-	þ	\$	0	1 3	-	2 5	-	- 	
e Se			0.15	-				_			_	=>	- 0	\$	¢		1	-	~		
ingl			0.0					_					=>	-	$\langle \rangle$	\$	~	0	-	 N	-1
S I		1	13	╉╤	1								_	⊥ בי>	-	6	5	~	2	-	-
Ų.			8		× *				_			_			<u>-</u> 5	-	5	 ح	~		-
3			2	╉╼	¥ ¥				-						<u></u>	<u>~</u>	-	<u> </u>	<u>~</u>		
4 <i>B</i> L			10	+	₹ ≝							_	_			ν	Ľ	<u> </u>	7		-
E				+	뷥	·	<u> </u>					_	_				~	<u>~</u>			4
			0.0		¥						 		_	T				7	•		4
			Semple Semple			~ ~	**	-		n 40	:	: 2	: 2	9	8	ŭ	8	SIE	<u>ş</u>	8	
			Single Size			< \$	υ	-	- 4			ב כ	: -].	د ،	я	z	٩	0	=	
		בט			_																
۳C		CV				16)														

pee 4,101.4

\$\$\$≠≞∽

1.1

MIL-SID-105E

(see 4.9.3 and 4.9.4)

TABLE III-A --- Double sampling plans for normal inspection (Master table)

.

									M	IL-S	STD-3	105E						
\square	ā	2		= =	(
	_	7 2		23	* = 3	۸												
	3	ł	•	2 2	83	<u>(</u>				-							-	
	8	2	•	1 E = A		83 83												
	8	÷.		2 2	2 6	R A		~			-							
	-	2			= #	23	23	V										_
	8	2	•		~ =	: 2	2 2	⇒										
	8	e Ne	•		• •		1 I 1 2	Ŷ			<u> </u>							
	3	4			-	• -	1.6	# E.	~									
	<u> </u>	2				5 EI 6	•	= R = E	2 5	1								
	3	3	•		* •		* 12	- =	= #	Ŷ	_							
	A	e 11-	•		1 1	2 2 2 1	1 C	2 11	7 11 11 19	11 14 12 14					_			
		4		~ ~		• •	* -	••	• =	2 2	3 2	7						_
•		*		• -	• •	• •			* =	* =	= #	4						_
1	2	4r 11	U	= }	o	• •			-	2			<u> </u>					
10-1	• 5	ir the	•	Ç	ſ	0 2 1 2			2 5 4 7	• •			# # = #	\leftarrow				
1	0	u.	2		L L	J	~ ~		* *	• •		• =	= =	3 ==	~			
1	•	1 4 C	יר		7	۲ •	• -	0 -		1 S		~ =	- =		• =			
1		46 8	U	=>	•	Û	۲¢		• •			~ -	- =	- =	= #	Ļ		
j j	51	e He	IJ		<u>J</u>	•	Û	J	0 2	1 1		* *		• •	7 11 13 14	1 2	1	
Ĩ	•	He A				-		1	7	* *			~-		• =	= =	देश	7
År. ry		1		_		-/	Ľ	<u> </u>	5	o -	0 7					~ =	= 4	
	9.0	1.2	U		-		\Rightarrow	ŀ	λ		0 -	• •		~ •		* =		= 4
	(7) Q	4						⇒	•	Ç	L	~ ~			2 \$ 6 1	~ •	12	
	ĸ	4							5		「	7	~ ~	~ -	• •	^ ~	~ •	• =
	•	~							<u>_/</u>	·	12	Y	• -	2 0 2		~ •		~ =
	9 13	3	U							\Rightarrow	ŀ	$\langle \mathcal{P} \rangle$	L	• -	• ¬			
1	9	<u>*</u> -									⇒		5	Ĵ	~ ~ 0 =			**
1	3											<u> </u>	-			~ ~		
		تر د	┝──		-							-/	Ŀ	~	17	• -	• •	
	340 0			_			_						\Rightarrow	•	Ŷ	□	• -	• •
	Ş	4												=>		5	۲)	• •
ŀ		1 1								·				-				
		l ×					_	<u> </u>							_/			
	10 0	, ,														\Rightarrow	·	
		1				~ <u>e</u>	- =	= #	2 3	R 3	3 8	8 <u>8</u>	ឆ្ក	2 B	23	3 <u>8</u>	<u>8 9</u>	2
 	1:		†					= =	88	ВВ	8.8	8 8	22	2 A	11	33	83	<u>8</u> 2
	1	-		11	ĮĮ	;]	1	11	, I	11	1	1	i	Į	Į	Ţ.		1
	<u>~</u> }41	ĩ	-	5	5	=			5	=	-	2			-		2	=
L_'		-		I	4	F	•	1		1	1	1	7		4	1	1	6

Use Areas securiting plan between arrees. If sample area equals as exceede for an horch arres, do 100 years on respective. Use Areas security plan above some de regeneres monder
Ibryceines aurder
Una convergending majo compiling plan (m offenentively, our durbe compiling plan talon, obere coolidate) . .

- \$\$₹₹.

•

•

(see 4.9.3 and 4.9.4)

. 1			- 2- 7				<u> </u>							<u> </u>					1		•
	- 1	Ē	Ĩ	•	7	<=															
	ł		÷		2	र जा	7												-+		
·	[_ ₽		•							_										
1	ł	-	Ĩ		2 2	1.2	<u>7, 3</u>	Ā													
		3	2	•	• =	= =	n 12	\langle									_				
2		5	Ť		ΞΞ	=	35	33	7-							-					
		~	2			<u> </u>	= =	= =	<u> </u>								_				
-		5			<u> </u>	2 2	= -	83													
2					그리			==	<u>۷</u>										_		
8		8	Ť	•		<u>n</u> el	× =	<u> </u>	<u>(</u>	_										ļ	
-		<u> </u>							• • • • 1			_									
		3	5	•		~ -			- 21	$\langle =$											
			Ī		~ -	+ n	- n	~ 2		इ.ह. १	1		····-			<i>.</i>			— -	{	
		₹	2	•	• ~		~ •	- = l	+=	• 👷	$\langle =$										
			÷	1	~ ~	~ +		5-1	~=	<u> </u>	ERI	٨									
		~	2	\mathbf{P}	e -	• •		~ •	~=	- <u>-</u> -	+ =	$\langle =$									
		\$	11			~ ~				~ ~	2 2 1	= स्त	1								
	1		-			0 -	0 n		<u></u>]	<u>- = </u>	<u>*</u> =]	• 🔊	<u></u>		-						
	2	e	÷.			ل	2	7-1		~~	~=	2 =	= #	A							
	-		×.				<u>-</u>			~ •	2=	- =	- 2						=		
	Ż	5	3	L	.		=⇒ I			• •		~ ≃	22	= #	\leftarrow						
	Ŧ		4	· · · ·				<u> </u>	~~			운동			<u>,</u>			<u>.</u>	·		1
	ie kr	Ŧ	2		=>	•		=>।	•-	• ~		~ •		- <u>-</u>		(==					Ē
			÷.					<u>لـخــــ</u>		~~	+			~ =	<u>= -</u>	र्ड हो	۸				1
			÷				•		=)	• - I	» -		~ ~	~ = \	- ≏	• ส	(<u>8</u>
	Ē		÷								~~		• •	5-1	1	3 2]	= = =	A			4
.	논	-	÷				~~/	<u> </u>		/	<u>- د</u>	9 -		~ •	¬ =	- 2	• 🛛	<u> </u>]	1
	j	=	z,	Ľ					.]				77	- ~ [•• ~]	~ =	± #	= =	2		li in l
	Ē		-		· <u> </u>							• -	• -		~ •	- =	- 2	• ≈			1
:		Ξ	ż						<u>ال</u>	. I		<u>_</u> >	~ ~ ~	21			<u> </u>	° *	= ~	1	ş
			*						<u>v</u>			/				~ •		<u> </u>			ţ
		8	2			_				=\$.		=>\		21]]	~~	<u>]</u> =	351	- 1	ì
		<u>اب</u>		· · · · · · · ·								— — 1			~ ~			╦╤┼			1
		=								_	=5) I	•		=>	• -	o -	- •	~ •	- I		2
		<u>.</u>	#											······		-	771	- 57	5 - 1		-
		<u>ء</u>						<u> </u>				=)	-		5)	ə -			~ •		Ī
I		2	4						_							-	~~	╕╺╿	• •		-
i		<u> </u>	<u></u>					<u> </u>			_			<u> </u>	<u> </u>		<u></u>	<u> </u>			ŧ ŧ
		Ē	=											<u>=</u> \	.		=> l	~ ~	21	ł	ĨÌ
														V			<u> </u>	<u> </u>			1
	İ .	1.													≕ >			⇒∣			įį
		┝───		┣───-																	11
		Ē									_					==>I	•		≍>∣	B –	11
		<u> </u>	1 1														-, -			<u> </u>	- <u>-</u> -
	•	1	ير ا						_		_					_	=>	•			33
		2	Ē																		8 8
		\$	د											· · · · ·					•		ለለ
		11					in p		- 10	2 0		9.0	0	- 0	00	~ 0	6 9				$\mathbf{Y}\mathbf{Y}$
	!	įį	-	ł	1	{	-		-~		[*]	~ 5	- 3	¤ñ	23	= 3	38	190	¥1 92	Ř	
	<u> </u>													<u> </u>							
	ł	1	i	ł	[]]	[7	. .		==	25	🏾 🆛	88	88	[<u>*</u> *]	8 R	ESE SIC	2 2	0 0	22	200	
	├───				<u> </u>	<u>├</u>		<u> </u>	<u> </u>	<u>-</u> -	<u> </u>	<u> </u>	<u> </u>	┝╼┤	<u> </u>	<u>-</u>				<u> </u>	
		7			11	ZÌ		1 I I	II	1	E		ΞĪ	I I I	εĪ	111		r md	2	1	
	┣—	<u>~</u>		┣──	<u> </u>	<u> ~ /</u>	<u>4</u> X	22	1 2 3	<u> </u>		<u> </u>	23		23	<u>a</u> 3	1=>	23	122	127	1
		÷:*	ł	-	=	· .	=		1	5	=	_	4	<u> </u>	2		1_	-	=	1.	1
	1 4	2 - 2	.	L	1	1	1		I		1 ·	1		I			1	-	t i	1	ł

- Arecploner number ą, ¢≬≠ ± •

.

the conceptualing aingle complies firs for, otherweiterly, are involve anothing plan folice, above availablel.

MIL-STD-105E

TABLE 111-B -- Double sumpling plans for sightened inspection (Master table) DOUBLE TIGHTENED

Acceptable Quality Lovets (roduc ed imprecian) Sample C----este lab-واجهده ا 0.010 0.015 0.025 0.040 0.046 15 0,19 015 0.25 15 1.5 19 5 68 43 . . . 1.45 0,1 6.0 45 100 158 250 400 650 1000 Sungi ei se compty lener al ag Ar Re der Ru te fle Ac No Ar De Ac Po As ||a te fi Ac flo As Ib Ar Ib Ar Po As Be 4a 94 te Re As No Ar ه مد ا ic fu As B le No Ċ ন্য . D ٠ . C 仑 D Firm 1 12 11 11 8 1 Û 0 0 . . 1 2 1 . \$ 10 2 Courses. 1 4 . • 1 5 6 9 0 13 12 14 2 3 4 4 7 11 22 × × Û Ū 3 6 5 10 7 12 11 17 8 12 12 16 18 22 26 29 ₽. f level 2.1 . . 0 8 J . ٠ - 5 ----1 . 0 0 1 3.6 6 7 4 6 f Firm 6 4 5 Û ᡗ 6 1 3 5 . 5 3 Secon 88 0 2 . 6 6 7 6.9 1 12/12 14 \$ C Firm . C . 1 0 0 . 1 1 1 3 5 矿 14 0 2 1 12 11 K See an . 1 5 3 4 1 6 9 N First D. 11 J • ٥ 0 . 2 1 1.6 \$ 10 ſ 0 Ĵ. 1.12 lu a 13 25 1 \$ 4 1 6.9 -থ I Firm 20 30 Û . . • . Т 3 3 - (រោ . نسر 0 1 1 1 1 1 1 1 I 30 6 . 1.5 3 - 6 4 1 A. First 32 Û ા તો કાલ п . . . 1 2 វា 0 1 . . 4 1 12 12 14 Sec. 24 n 44 . t. 3 4 4 7 . Û ι F la se 50 50 Û . 0 0 ¢. 2 1 1 5 10 50 t 00 i 0 2 0 1 5 . 4 7 6 7 . 12 12 15 Secon Fires Л 0 2 0 0 0 1 3 \$ 10 10 80 ᡗ - 5 1 1 . 0 2 1 3.6 + 12 12 15 0 1 1 . . Secon 80 1 60 Ĵ 15 0 1 5 2 1 5.1 5 11 1 Fun î • • 3 . 125 3.6 13 250 0.0 4 1 . 1 13 117 18 Second 2.2 P Firm 200 1.3 з. 200 ᠬ ٠ ٠ . 0 4 3 10 Second 200 60 . 1 . 4 1 5 4 2 2 7 0 4 1 5 3 8 5 8 U t inne 315 315 Ŷ . 0 . 4 2 315 630 . . 3 3 4 1 12 12 16 1 L. lices. A First 500 1 3 . . . 2 7 3.1 3 10 500 ٠ - 21 1 5 î 500 1000 6.9 . 12 E17 IA

TABLE III-C --- Double sampling plans for reduced inspection (Master table)

(see 4.9.3 and 4.9.4)

DOUBLE

Seco

- armen. Il assigle alse agente se espende las articles das 100 precess languetias.
- first sampling plu

٠

3

۰.

- sampling plan for atornatively, can deable sampling plan infor, when evaluated

. .

coupt the lat, but establish second inspective date 4.10.5.4) has have executed, but the priorying surface

MIL-510-105E

4.9.3 and 4.9.4) TABLE IV-A----Multiple sampling plans for normal inspection (Master table)

11

anglia pin b'bu.

Ŧ

tag and complex for for a second complex for for provided at the reader the

İ

....

ï

Ť aairely.

MULTIPLE NORMAL

MULTIPLE NORMAL

لطحاب سد مطيرد والدخامة بالمد متعلمان

ł

MIL-SID-105E

(see 4.9.3 and 4.9.4)

22

ورمواد منجوانی وقود (در مانسانواند). ده صوابها میموانیم واده ایده. طبحه در طبحه در مالمانه). مهمله دیممیانی وقد از ماناسانوانهای ده سوانهاه معمولاته وقد اساس طبحه بردانهاه) مهاده م

Ĺ

MULTIPLE TIGHTENED

MULTIPLE TIGHTENED

MULTIPLE REDUCED

(see 4.9.3 and 4.9.4)

24

į

Accepted to the second A .

Principal di

antisple sampling plan below, when are bibled , ("Adaliana south the file. ald i ble bag single compliant plan for alternatively, our ł ۵

complete plan for allocation ly, and ł . .

a han brea exceeded, but the mjection The surface of the second second II, when the Access ۵

4				MIL-SID-105E	
4.9		ŝ	-	¢	
g		3			
3 9		8	-	¢	
.9.		8	ž ž		
e 4			ž	A	
(se		-	7		
1010		<u> </u>			
		3			
		•	2	¢	
		=	#	<	
	-	2	<u>لة</u> بر	<hr/>	
dee		-	Ţ		Į
1 ·	Ī	:	1		I I
	j.	=	ž		1 8
1	tite I e		77 -11		4
ed)	3	-	ž		i
imu	-		1r 4c		ļ
n no		ě		······································	
چي بو		9.0	. 44		11 11
		20	* 3		
		615	4 7		1
2		6.0	2		= 1
1		0 OKS	ł		į
a E		8	ł		ü.
ł		2	4		11
, ,		÷			
-	ł	<u> </u>	3 2		557
2	┝		3		\$\$*
]]]		NAABBBA NASUBEU NEABAAA BABBAA 292322 18833856	
		j			
		j			
		ļų	ł		

Multiple campling blans for reduced inspection (Master table) TARIE IV.C.

•

.

;

MULTIPLE REDUCED

Pprime manage

. . 22.+

Acceptare as proved a this source ats. R, day the first source, the acceptants earby the base second that he spectra societ. Et's and had not been the base was all superclas. (As 4,10 f.4)

TABLE V-A-Average Outgoing Quality Limit Factors for Normal Inspection (Single sampling).

(see 3.3)

•

Letter Size 0.010 0.015 0.023 0.000 0.055 0.10 0.15 0.25 1.0 1.5 H 2 5 - 5 - 6 0.65 1.0 1.5 H 3 - 5 - 6 0.15 0.025 0.040 0.055 1.0 1.5 H 3 - 5 - 1.3 - 1.2 2.8 4.6 F 20 - 0 - 0.14 1.2 1.1 1.7 2.3 H 20 - 0.16 0.12 0.14 1.1 2.7 K 125 0.14 0.12 0.14 1.7 2.4 K 125 0.14 0.12 0.14 1.1 1.7 2.8 K 125 0.14 0.15 0.27 0.3 0.67 1.1 1.7 2.1 N 500 0.11	Code	Sample									ĺ		Accep	stable (Quality	Level						Ī	[
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Letter	Size	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.60	0.65	1.0	1.5	2.5	4.0	6.5	2	15	X X	Ş	S	100	<u>8</u>	_ង	ş	ર્ચ	ğ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<	~		 	<u> </u>	ļ											=			5	69	57	160	ន្ត	330	470	130	101
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	. m														13			8	.9	65	011	130	8	310	8	R	<u>)</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	о 0				. <u> </u>								•		1.4			11	2	ŝ	63	8	061	190	2 2	8	8	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c	•											<u> </u>	4 .6			=	=	2	\$	8	8	120	160	0 <i>1</i> ,2	¢10		
F 20 1.8 1.2 1.8 25 H 50 32 0.46 1.2 1.1 1.7 2.4 H 50 90 90 91 1.1 1.7 2.4 H 50 90 90 91 90 1.1 1.7 2.4 K 125 90 91 0.46 9.41 9.41 1.1 1.6 2.5 K 125 0.074 0.13 0.29 0.41 0.65 1.06 1.4 2.1 N 500 0.035 0.11 0.17 0.27 0.36 0.61 1.4 2.1 N 500 0.035 0.11 0.17 0.27 0.36 0.61 1.3 1.9 N 500 0.11 0.17 0.27 0.36 0.51 1.3 1.9 N 500 0.28 0.46 0.41 0.41 0.41 1.2 1.8	נים ב	, ü											2.8			6.5	=	2	5	Ť	8	12	110	011	ន			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ís.	8										1.8			4.2	6.9	9.7	16	ឌ	R	Ş	73						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	4	_,								1.2			2.6	£.4	6.1	6.6	=	21	Ri	\$				<u>.</u>	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$; 5			_~					0.74			1.7	2.7	3.9	6.3	9.0	13	<u>e</u>	8								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$:	8							0.46			<u> </u>	1.7	2.4	4 .0	5.6	8.2	12	≌						-			
L 200 0.13 0.18 0.42 0.69 0.97 1.6 2.2 M 315 315 0.014 0.12 0.12 0.13 0.27 0.44 0.62 1.00 1.4 2.1 N 500 0.074 0.11 0.17 0.27 0.39 0.63 0.90 1.3 1.9 P 800 0.0746 0.11 0.17 0.26 0.43 0.63 0.90 1.3 1.9 Q 12500 0.0255 0.11 0.17 0.26 0.43 0.63 1.2 1.18 H 2000 1.2500 0.042 0.041 0.16 0.25 0.33 0.67 0.73 1.2 1.3 H 2000 1.2500 0.042 0.043 0.16 0.22 0.33 0.67 0.73 1.2 1.3	3	125						0.29			0.67	1.1	1.6	2.5	3.6	5.2	7.5	2										
M 315 0.074 0.12 0.12 0.27 0.44 0.62 1.00 1.4 2.1 N 500 0.046 0.014 0.17 0.17 0.27 0.39 0.63 0.90 1.3 1.9 P 600 0.046 0.11 0.17 0.27 0.39 0.63 0.90 1.3 1.9 Q 1250 0.029 0.011 0.16 0.25 0.36 0.82 1.2 1.8 Q 1250 0.029 0.011 0.16 0.25 0.36 0.75 1.2 1.8 R 2000 1.250 0.029 0.091 0.16 0.25 0.36 0.73 1.2 1.3	- 2	i g					0.18			0.42	0.69	0.97	1.6	2.2	3.3	2.9	7.3											
N 500 0.074 0.17 0.17 0.27 0.39 0.63 0.90 1.3 1.9 P 800 0.046 0.11 0.17 0.26 0.63 0.90 1.3 1.9 Q 1250 0.028 0.16 0.11 0.16 0.25 0.35 0.82 1.2 1.3 Q 1250 0.028 0.11 0.16 0.25 0.36 0.75 1.2 1.3 R 2000 1250 0.051 0.16 0.15 0.35 0.75 1.2 1.3	ב נ	315				0.12			0.27	0.44	0.62	1.00	1.1	2.1	3.0	5					•			_				
P B00 0.046 0.11 0.17 0.26 0.46 0.82 1.2 1.3 Q 1250 0.029 0.067 0.11 0.16 0.25 0.35 0.75 1.2 1.2 1.3 R 2000 1250 0.044 0.11 0.16 0.25 0.35 0.75 1.2 1.2 1.3 R 2000 1250 0.042 0.091 0.16 0.22 0.33 0.47 0.73	z	005			0.074		<u> </u>	0.17	0.27	0.39	0.63	0.0		1.0	2.9								_					
Q 1250 0.029 0.029 0.067 0.11 0.16 0.25 0.36 0.52 0.75 1.2 R 2000 0.042 0.069 0.097 0.16 0.22 0.33 0.47 0.73	: a	008		0.04			0.11	0.17	0.24	0.60	0.56	0.82	1.2	1.8														
H 2000 0.042 0.069 0.091 0.16 0.22 0.33 0.47 0.73	o	1250	0.029			0.067	0.11	0.16	0.25	0.36	0.52	0.75	1.2															
R 2000 0.042 0.069 0.097 0.16 0.22 0.33 0.47 0.73			<u> </u>		,	<u> </u>				<u> </u>																		
	Æ	2000			0.042	0.06	0.0	0.16	0.22	0.33	0.41	61.0											_					
. Noise Farths areet AOOL, the shore relate must be mult	I			-	- Note	1	4	act A(30L. t	1k			aet be	, sulti	4 b •114	+ (1-	<i>•</i>	a) (a)		~	•	•••						

AOQL NORMAL

ł

(see 3.3)

TABLE V-B-Average Outgoing Quality Limit Factors for Tightened Inspection (Single sampling).

	<u></u>	<u> </u>					
	5	882					
[8	88 8	2				
	â	888	22				
	8	363	9 5				
	8	r = 8	2.2				
	3	233	3 2 2				
	8	350	\$ \$ 9	R			
	n	85	Z Z N	12,10			
	2	11	223	***			
	9	•	a a 🖓	÷ _ 2	2		
7	.,	2	33	333	::		
1	4.0	11	<u>1</u> ;	323	312		
1	11		3	293	222	2	
			3	55	222	23	
	2			11	⊒ ₽ 2	255	
	5.			3	555	233	3
	. g			9.74	17.0 17.0	8.0 8.0 13.0	Q. •
	11			0.44	•. <i>1</i> 7	5.0	1
	£.5				P.	1.4 1.4	1 •
	-					0.11 0.11	0.047
					9.13		8
ł	8						3
}	23					ł	£2.
	e.015					. 8	
	51 9 9						0.010
	<u>j</u> t		• = R	288		828	80 11 12 12
	31	400		0 z -		= 4 0	Z ~
				I	L	L	

MIL-SID-105E

Natur For the erset AOOL, the above reliese must be multiplied by (1 - Bample else)

{*** 11.4}

AOQL TIGHTENED

LQ (DEF 10.0%		ТАВ	LE VI	- <i>A</i> ,	Limitin (ig Qui for No	ality (ii ormal	n perc Inspec	ent de tion, :	fective Single) for sampl	which ing)	<i>P</i> _{<i>a</i>} =	= 10 . •	Percen	at .	(see	4.11)	
	Code	Sample							Accé	otable Qu	islity Le	vel]
VES)	letter	size	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	
	٨	2												1			68	1	1
I	B	3	1	ļ	ļ				(}		ł		54			l I
	С	5		ĺ					1					ł	37			58	
	n	8	1	}]		}]	·				25		1	41	54	H ا
	E	13					{			{		{	16		}	27	36	44	L-3
	F	20						ł				11			18	25	30	42	
28	G	32									6.9			12	16	20	27	34	05E
	11	50							}	4.5			7.6	10	13	18	22	29	
	J	80							2.8			4.8	6.5	8.2	11	14	19	24	
	к	125						1.8			3.1	4.3	5.4	7.4	9.4	12	16	23	ł
	L	200					1.2			2.0	2.7	3.3	4.6	5.9	7.7	10	14		
	ч	315				0.73			1.2	1.7	2.1	2.9	3.7	4.9	6.4	9.0			
	N	500			0.46			0.78	1.1	1.3	1.9	2.4	3.1	4.0	5.6				Ì
[Р	800	1	0.29			0.49	0.67	0.84	1.2	1.5	1.9	2.5	3.5					l
	Ų	1250	0.18			0.31	0.43	0.53	0.74	0.94	1.2	1.6	2.3						
	11	2000			0.20	0.27	0.33	0.46	0.59	0.77	1.0	1.4							

.

444 AR - -

TABLE VI-A — Limiting Quality (in percent defective) for which $P_a = 10$ Percent (for Normal Inspection Single campling)

TABLE VI-B—Limiting Quality (in defects per hundred units) for which P_a = 10 Percent (for Normal Inspection, Single sampling)

.

í	see	4.	1	1)
	~~~		•		

Code	Sample												Accep	sable (	Juality	Level											
leuer	aíze	0.010	0.015	0.025	0,040	0.065	0.10	0 15	0.75	0.40	0.65	1.0	1.5	2.5	4,0	6.5	10	15	25	40	65	100	150	250	400	650	1000
A .	2															120			200	270	330	460	590	770	1000	1400	1900
в	3								]				1		n			130	180	220	310	390	510	670	940	1300	1800
С	5				ł								Ì	46	•		79	110	130	190	240	310	400	560	770	1100	
D	8		ł										29			49	67	84	120	150	190	250	350	430	670		
E	13											t8			30	41	51	н	91	120	160	220	300	410			
F	20										12			20	27	33	<b>\$6</b>	59	11	100	140						
G	32									1.2			12	-17	<b>2</b> 1	29	37	48	ல	<b>6</b> 3	•						
н	50								4.6			7.8	n	13	19	24	31	40	56								
L L	80							2.9			4.9	6,7	8.4	12	15	19	ద	35									
K	125						1.8			3.1	4.3	5.4	7,4	9,4	12	16	23										
L	200					1.2			2.0	2,7	3.3	4.6	5.9	7.7	LO	14											
4	315				0.73			1.2	1.7	2,1	2.9	3,7	4.9	6.4	9,0												
N	500			0.46			0.78	1.1	1.3	1.9	2.4	3.1	6.0	5.6													
е	800		0.29			0 49	0.67	0.84	1.2	1.5	1.9	2.5	3.5														
v	1250	0.18	•		0,31	0 43	0.SJ	0,74	0.94	1.2	1.6	2.3															
- 11	2000			0.20	0.27	0.33	0.46	0.59	0.77	J.0	1.4																

Cada	Semple						Accept	able Qua	lity Lev	el								
Loue Jetter	ąize	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	1
٨	2															78		]
B	3						1								63		ĺ .	
С	5							ļ				ļ	ļ	45	]		66	
D	8	1											31 ·			47	60	].
E	13											21			32	41	50	
F	20										14			22	28	34	46	
G	32			į						8.9			14	18	23	30	37	
	50								5.8			9.1	12	15	2G	25	32	
,	80							3.7			5.8	7.7	9.4	13	16	20	26	
	125	-		ĺ			2.4			3.8	5.0	6.2	8.4	11	14	18	24	
L	200			Ì		1.5			2.4	3.2	3.9	5.3	6.6	8.5	11	15		
М	315				0.95			1.5	2.0	2.5	3.3	4.2	5.4	7.0	9.6			
N	500			0.60			0.95	1.3	1.6	2.1	2.6	3.4	4.4	6.1				
Р	800		0.38		1	0.59	0.79	0.97	1.3	1.6	2.1	2.7	3.8					
Q	1250	0.24			0.38	0.50	0.62	0.84	1.1	1.4	1.8	2.4						

•

## TABLE VII-A-Limiting Quality (in percent defective) for which P_a = 5 Percent

မ

.

٠

. -
TABLE VII-B—Limiting Quality (in defects per hundred units) for which P_a = 5 Percent (for Normal Inspection, Single sampling)

٠

						(se	e 4.	.11)	
-		 				_			
16	~		100	150	250	400	(50)		•

.

MIL-SID-105E

Code	Semple										Ассер	able (	)uality	Level						_							
leiter	eize	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	15	z	40	65	100	150	250	400	650	1000
A	2															150 ·			240	320	390	530	660	850	1100	1500	2000
в	3						l	· ۱	\$	ſ	1	ļ	1	ſ	100			160	210	260	350	440	570	730	1000	1400	1900
с	5									]	}	ļ	ļ	60			95	130	160	210	260	340	440	610	810	1100	
D	8												38			59	79	97	130	160	210	270	380	510	710		
ε	13											23			37	48	60	81	100	130	170	230	310	440			
F	20										15			24	32	39	ស	66	BS	110	150						
G	32									9,4			15	20	24	ມ	41	ស	68	95							
н	50								6.0	2		9.5	13	16	21	26	34	- 44	61								
J	80							3.0			5.9	7,9	9.7	13	16	21	27	38									
ĸ	125						2.4			3.8	5.0	6.2	8,4	11	14	18	24										
L	200					1.5			2.4	3.2	3.9	5.3	6.6	8.5	-11	15									Í		
ы	315				0.95			1.5	2.0	2.5	3.3	4.2	5.4	7.0	9.6			3									
N	500			0.60			0.95	1.3	1.6	2.1	2.6	3.4	4.4	6.1													
ρ	600		0.38	<b>}</b>		0.59	0,79	0.97	1.3	1.6	2.1	2.7	J.8			ł											
0	1250	0.24			0.38	0.50	0.62	0.84	1.1	1.4	1.8	2.4												1			
ų	2000			0.24	0.32	0.39	0.53	0.66	0.65	1.1	1.5																

.

•

3

LQ (DEFECTS) 5%

(see 4.7.3)

TABLE VIII - Limit Numbers for Reduced Inspection

0 0 ..... 2 2 2 s ⊇ s 3 • Acceptable Ondity Level . . • 0 fi + 9 3 <u>=</u> * = 7 2 -~ = .... 2 9 3 2.5 . . . 2 • • - - -11 12 M . . . . • 0 N -~ = # 2 - - -. . 0 0 N 0 63 - - : . . . • .• • 8 0 0 . . . . . . . . . • 12 . . ° o ~ + ٠ • • . . . 0.15 . . . . . . . . . . . . **0**.10 . . . • • . . . . . . . 0.045 . . • • • . . . . . . 0.040 . . . . . . • • . . . • 0.025 . . . . . . . . . . ٠ 0.015 . . . . . . • • • . . . 0.010 . . . . . . . . . . . . Number of sample milits fitter last 10 lots of batches 6121 - 000 667 - 702 600 - 124 641 - 0511 6411 - 0002 6441 - 0521 11 - 00 11 - 00 11 - 002 R 8 2 R 8 8

Presses that the comber of semple usits from the leaster hat between it not undifiered inspection for this AUL. Is this instance more than the lost of the not be souther and be avery for the calculation, provided that the last of the second visits on original importian. .

•

-*

LIMIT NUMBERS MIL-STD-105E

특류

2 2 Q

3-<u>2</u> <u>2</u>

9 3 <u>9</u>

N X 3

2 2 9

= = A

* * *

. . .

0 - -

...

£ 8

E g E

5 E E

김 은 글

**⇔ ¤ ≅** 

2 3 3

コおき

r = a

- - 3

2

≘ ≘

8 <u>8 5</u> 5

538

a 9 3

5

·9 E

Ξ

2 E

383

9 **3** 2

x 🙄 S

129

r = ≈

~ * ~

0 ~ -

00 ~

. .

...

. . .

٠

ē

5, 18

a E

8 😂

នន

= =

***** =

- -

M +

o -

φ φ

7491E - 00002

8

3

ŝ

8

3

8

3

3

ង

2

2

ł

••



# TABLE IX — Average sample size curves for double and multiple sampling (normal and tightened inspection)

•

٠

с С

AVERAGE



# TABLE X-A-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

MIL-SID-105E

					Accepti	ble Quality	Levels fan	mal inspec	tion)						
Р,	65	45	25	40	65	100	150	$\times$	250	$\times$	400	$\left \times\right $	650	$\left \times\right $	1000
	p (in percent defective)						p (i	n defects p	er hundred	unita)					
99.0	0.501	0.503	7.4.J	21 R	41.2	89 J	145	175	239	305	374	517	629	859	977
950	2.53	2.56	17.8	40 9	68.3	131	199	2.35	308	381	462	622	745	995	1122
90.0	5.13	5.27	26.6	55 1	87.3	158	233	212	351	432	515	684	812	1073	1206
75 0	13.0	11.4	48,1	B6.4	127	211	298	342	431	521	612	795	934	1214	1354
50 0	29 3	31.7	83 9	134	184	284	:183	433	533	633	733	933	1083	1383	1533
25 Q	50.0	69.3	135	196	<b>25</b> 5	371	484	540	651	761	870	1087	1248	1568	1728
10 0	64.4	115	191	266	334	464	589	650	770	889	1006	1238	1409	1748	1916
5.0	77.6	150	2.37	315	388	526	657	722	848	972	1094	1335	- 1512	1862	2035
1.9	90.0	230	332	420	502	655	RDO	870	1007	1141	1272	1529	1718	2088	2270
	$\times$	$\times$	40	65	100	150	X	[.] 250	$\left \times\right $	400	$\times$	650	$\times$	1000	$\times$
Ì	•				Accepti	able Quality	y Levela (ii)	threned ina	pection)						

Nutor Bisossiaj distribution used by surveys defective computations; Polasse for defects per handred usite.

>

.

<b>-</b> ,	Cumu-							Accept	oble Quo	lity Level	is (sormal	inspeci	ca)						Í	Cumu.
Type of compliag plea	totive somple size	Less then 6.5	6.5	$\times$	10	15	2	40	65	100	150	$\times$	250	$\left \times\right $	400	$\left \times\right $	650	$\times$	1000	Jativa nomple nite
		Ac Re	Ac Re	Ac fle	Ac fle	Ac Re	Ac fle	Ac Re	Ac Rr	Ac Re	Ac Re	Ac fle	Ac fle	Ac Re	Ac Re	Ac fle	Ac Re	Ac Re	Ar Re	
Single	2	▽	0 1	1/20	1144	Um	1 2	2 3		5 6	7 В	8 9	10 11	12 13	16 15	18 19	21 22	27 29	30 31	2
Double		▽		tode Letter	code Letter	code Letter	(•)	(1)	(D)	(1)	(1)	( ¹ )	(*)	(1)	(*)	(*)	(r)	(*)	(*)	
Veltiple		V	•	D	C	Đ	•	•		•	•	•	•	•	•	•	•	•	•	
		Lens then 10	X	10	15	25	40	65	100	150	X	250	X	400	Х	650	$\times$	1000	Χ̈́	

# TABLE X-A-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: A

.

V = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

- Ac a Acceptance number
- Re . Hejection number
  - w Use single sampling plan above for alternatively use code latter D),

٠

### CHART B - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS





[						Acci	eptable Qu	ality Level	e (sormal l	 Inspection	)						
P#	4.0	4.0	15	25	40	65	100	$\times$	150.	$\left \times\right $	250	$\left \times\right $	400	$\left \times\right $	650	$\times$	1000
	p (in percent defective)			•		_		p (ie	defects pe	r hundred	units)						
99.0	0.334	0.J35	4.97	14.5	27.4	59.5	96.9	117 .	159	203	249	345	-419	572	651	947	1029
95.0	1.70	1.70         1.71         11.8         27.3         45.5         87.1         133         157         206         256         308         415         496         663         748         1065         1152           3.45         3.51         17.7         36.7         58.2         105         155         181         234         288         343         456         541         716         804         1131         1222															1152
90 0	3.45	3.51	17.7	36.7	343	456	541	716	804	1131	1222						
75 0	9.14	9.59	32.0	57.6	84,5	141	199	228	287	347	408	530	623	809	903	1249	1344
50.0	20.6	23.1	55.9	89.1	122	189	256	289.	356	422	489	622	122	922	1022	1389	1489
25.0	37 0	46.2	89.A	131	170	247	323	360	434	507	580	724	832	1045	1152	1539	1644
10.0	53.6	76.8	130	177	723	309	392	433	514	593	671	825	939	1165	1277	1603	1793
S.0	63.2	99.9	158	210	258	350	438	481	565	648	730	890	1008	1241	1356	เทว	1686
1.0	78.5	154	221	280	335	437	533	580	671	761	848	1019	1145	1392	1513	1951	2069
	6.5	6.5	25	40	65	100	Х	150	Х	250	$\times$	400	$\times$	650	X	1000	$\times$
		·	, <b>,</b>	·		Act	ceptable Q	untity Levi	In Lighter	ed inspect	tion)						

Nore: Mountal displaying used for percent defective computations; Polesses for defects per bandend volte.

36

1 .

# TABLE X-8-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: B

[				<u> </u>					<u>.</u>	Accep	eeble Q	nolity I,	evels (	i Lamor	aspectio				<u> </u>			Came
Type of sampling	lative sampte	Leve than 4 0	4.0	6.5	$\times$	10	15	25	40	ట	100	$\times$	150	$\times$	250	$\left \times\right $	400	$\times$	650	$\left \times\right $	1000	tative sample
pise	size	Ac Re	Ac He	Ac Re	Ac Re	Ac Ile	Ac fie	Ac fle	Ac fle	Ac Ile	Ac Rr	Ac Re	Ac He	Ac Be	Ac Re	Ac fle	Ac Ile	Ac. Re	Ac Ar	Ac Re	Ac Re	size
Singte	3	▽	a 1				t 2	2 3	3 4	56	7 8	8 9	10 11	12 13	14 15	18 19	21 22	27 28	30 31	41 42	41 45	з
Double	2	▽	•	cudo Letter	code Letter	code Letier	0 2	03	14	25	3 1	3 7	5 9	6 10	7 11	9 14	11 16	15 20	11 22	23 29 52 53	25 31 56 57	2
			A D C																			
Yultiple		▽					-++	+	++	++	++	++	++	-++	++-	++-	++	-++-		-++-	++	
4						•																
<b>L</b>	•	Less ibsa 6.5	6.5	$\times$	10	15'	25	40	65	100	$\times$	150	$\times$	250	$\times$	400	$\times$	650	$\times$	1000	$\times$	
									Accep	nable Q	wolity I.	evels (	lightene	d inspe	ction)					-		j

👽 🗧 Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

- Ac a Acceptance aumber
- He 😑 Urjection number

.

- = Use single sampling plan showe (or alternatively use code letter E)
- CCC ++- = Use double sampling plan above (or alternatively use code latter D)



(Curves for double and multiple sampling are matched as closely as practicable)





<u> </u>	T						Acceptat	ate Quality	Levela (n	ormal inspr	ction)							;
P.	2.5	10	2.5	10	15	25	40	65	$\left \times\right $	100	$\overline{\times}$	150	$\left \times\right $	250	$\times$	400	$ \times $	650
	p (in perces	nt defective)					,		p (in	defects pr	r hundred (	units)				<b>_</b>	•	L
99.0	0.201	3.27	0.201	2.97	8.7z	16.5	37.5	58.1	70.1	95.4	122	150	207	251	343	391	568	618
95.0	1.02	7.64	1.0J	7.11	16.4	27.3	52.3	79.6	93.9	123	154	185	249	298	398	449	639	691
90.0	2.04	(1.2	t.((	10.6	22.0	34.9	63.0	93.1	109	149 -	173	206	273	325	429	482	619	133
75.0	\$.59	19.4	5.75	19.2	34.5	50.7	84.4	119	137	172	208	245	318	374	485	5(2	749	806
50.0	12,9	31.4	13.9	33.6	53.5	73.4	113	153	173	213	253	293	373	433	553	613	633	893
ZŚ.0	24.2	45.4	27.7	53.9	78,4	102	148	194	216	260	304	348	(35	499	627	691	923	985
10.0	36.9	58.4	46,1	17.8	106	134	185	235	260	308	356	403	495	564	699	766	1010	1076
5.0	45.1	65.7	59.9	94.9	126	155	210	263	289	J39	389	438	\$34	605	745	814	1064	1131
1.0	60.2	77.8	92.1	133	168	201	262	320	348	403	456	509	612	687	BJ 5	908	1171	1241
	4.0	$\times$	4.0	15	25	40	8	Х	100	$\times$	. 150	$\times$	350	$\times$	400	$\times$	650	$\left  \times \right $
							Accept	oble Qualii	y Levels (	tightened i	napection)							

intry. Biannial distribution uned for pereras defective computations: Polynom for defects par bandrad union.

.

Type of compliag plan	Cumu- Jative sample aize	Less then 25	2.5	4.0	$\times$	6.5	10	15	5	40	65	$\times$	100	$\times$	150	$\times$	250	×	400	$\times$	650	1000	Como- lative comple size
		As_Rs	As R.	AS B.	Sc Be	As R	As_As	As Re	As Be	Ac Re	As 1):	Ac Re	Ac Dr	As Be	As Be	Ac B	Ac Ht	Ac_fle	Ac_fle	As He	Ac. Be	Ac fle	
Singlu	5	▽	0 1				1 2	23	3 4	56	7 8	8 9	10 1)	12 13	14 15	18 19	21 22	27 28	30 31	41 42	4 4	   	s
Double	3		•	code Letter	code Letter	Code Letter	0 2	03	14	2 5	37	3 7	5 9	6 10 15 16	7 11	9 14	11 16	15 20 34 35	17 22 17 38	23 29 52 53	25 JI 56 57	code Letter	3
				8	E	D						<b> </b>										8	
Multiple		▽	•				++	++	++	**	++	-++	**	++	++	++-		-++		++	+		
		Less than	4.0	$\times$	6.5	10	15	ಸ	40	େ	$\times$	ιœ	$\times$	150	$\times$	250	$\times$	400	$\times$	650	$\times$	1000	
									Acce	xable (	haality L	.evets (	lightene	l inspec	tion)								

.

.

TABLE X-C-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: C

abla = 0 as nost subsequent sample else code letter for which acceptance and rejection numbers are svailable.

.

- Ac a Acceptance number.
- He 🛤 Rejection number,

•

- B Use single sampling plan above (or alternatively use code latter f)
- -++ cs Use double sampling plan above (or alternatively use code letter D)

MIL-SID-1058

40

. .

# CHART D - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

(Curves for double and multiple sampling are matched as closely as practicable)



### TABLE X-D-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

					<u>.</u>		A	ccepeable (	Juality Leve	la (normal a	inspection)								
P.	1.5	6.5	10	1.5	6.5	10	15	25	40	$\times$	65	$\left \times\right $	100	$\left \times\right $	150	$\times$	250	$\times$	400
-	p (in p	ercent del	lective)		L					p lin d	efects per	hundred u	mits)						
99.0	0.126	1.97	6.08	0.126	1.86	5.45	10.3	22.3	36.3	43.8	59.6	16.2	93.5	129	157	215	244	355	386
95.0	0.639	4:64	11.1	0.641	4.44	10.2	17.1	32.7	49.8	58.7	17.1	96.1	1]6	156	186	249	281	399	432
90.0	1.31	6.B8	16.7	1.32	6.65	13.8	21.0	39.4	\$8.2	67.9	97.8	108	129	171	203	268	301	424	458
75.0	3.53	12.1	22.l	3.60	12.0	21.6	31.7	52.7	74.5	85.5	108	130	153	199	234	303	139	468	504
50.0	8.30	20.1	32.1	8.66	21.0	33.4	45.9	70.9	95.9	108	ເນ	158	183	Z33	271	346	383	521	558
25.0	15.9	30.3	43.3	17.3	33.7	49.0	63.9	92.6	121	135	163	190	217	272	312	392	432	517	617
10.0	25.0	40.6	53.8	28.8	48.6	66.5	83.5	116	147	162	193	222	252 *	309	352	437	479	631	672
5.0	31.2	47.1	60.0	37.4	59.3	78.7	96.9	131	164	180	212	243	274	334	378	465	509	665	1 <u>0</u> 7
1.0	43.8	59.0	70.7	57.6	83.0	105	126	164	200	218	252	285	318	382	429	522	568	732	776
·	2.5	10	$\mathbf{X}$	2.5	10	15	25	40	$\times$	65	$\left \times\right $	100	$\left \times\right $	150	$\times$	250	$\left \times\right $	400	$\times$
	<u>├</u> ──── <b>┘</b>			·······	ł. <u>.</u>	*	<b>A</b>	Accepteb	le Quality	Levels (ti	ghtened in	spection ]							

Retes Blanstal distribution und far parcost defactive evopetations; Palanan far defacts par bandred entir.

TABLE X-D-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: D

.

		ä	63	'n	2	~	•	ø	8	2	13	Ξ		
	11.gthr 15.00 100	÷ E	٥	٥		٥							Higher then 400	
	8	È	3	11	\$ \$7	2	2	8	\$	3	8	2	X	
	$\overline{\nabla}$	<u>خ</u> بير	- 3	2	3	5		<u>x</u> _	3	2	3	2 2	$\frac{1}{2}$	
	Ň	y.	=	R	2	<u>ہ</u>	3	. 8	à	\$	5	2	â	
	ន្ត	ž	ונ ו	<i>a</i> 1	2	1 15	61 1	27	К	-9	1 47	3	Χ	
		- <u>-</u>	¥	1 2	<u>.</u>	9			12	<u></u>		<u>.</u>	<u> </u>	
	Ň	٩c	u.	15 2	<u></u>	-	2	=	2	2	ę.	5	XÌ	
	150	c Re	2	16	12	•	114	61 5	2	5 23	8	1 28	Ι	
		- ¥	10 21		<u>~~</u>		- <u></u>		2	<u>x</u> x	<u></u>	<u></u>	$\sim$	
1	Ň	Ac F	81	•	_ุล	<b>.</b> –		=	16	ផ	2	8	_×	
-	8	e Ne	15		61	-	9	2	11	8	ล	2	X	2
rction	$\overline{\mathbf{b}}$	7		- <u>-</u>	<u> </u>			2	13	11	<u>2</u>	<u>2</u>		i.
in spe	LÅ.	۲e آ	13	9	2	•	-	~	9	Ξ		3	ĭ S	
Ī	3	Be	11	•	11	5	•	01	3	15	17	61	ΙX	
9		¥.	6	2 5					<u> </u>	3	<u>-</u>	<u></u>		ц.
140	X	H I	-	-	_			-	- 9	-	2	-	3	Ŧ
kiy I		R.	6	-	•		•	-	2	=	=	Ξ	$\nabla$	2
6		¥ C	~	-	-	•	-		~	-	2	2	$ \Delta $	Ī
- Idea	ุ่ม	le B.	. s	~	~			ې د	~	~ ~	~	2	3	-
Acce	~	ц.	-	-	5	-	-	-	~	-0		-	8	Т.
		۲.	~	_	-	•	<u> </u>		~	<u> </u>	-	-	- <u>-</u>	¥
	2	¥ ت			-	<b>~</b>	-	-	•	-	~	-	2	
	<u> </u>	A A	~~~	~	~~~		~	~~	-	-	-	<u> </u>		i i
	•	ž		•	_ =	•	•	•	<u> </u>	<u> </u>		~	<u> </u>	
	ģ	Ac Re				ي س							<u>\$</u>	
	X	ž ž		5 8		<b>L</b>							9	
	2.5	Ac Re	:			υ υ							Χ	
	2:1	æ	-	•				_					12	
	<b> </b>	<u> </u>	<u> </u>			+							┼╌╴	1
	1151	2 2	⊳			⊳							25 25	
	Tel te	-is		~	2	~	-	÷	6	2	2	Ξ		
	Type of rempling		Stagta						Mainipie				]	

MIL-STD-105E

Use seet preceding sample size code letter for which acceptance and rejection sumbers are available. D

.

•

- Les anss subsequent sample alse code letter lor ubleh acceptance and rejection numbers are available. đ

  - Acceptance number b

.

- Rejection number ņ
- upperious memory. Use single sampling pion above (or elternatively use code letter 6) 0022.
  - Acceptionce not permitted at this temple size. 11 g •

### CHART E - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

(Curves for shuble and multiple sampling are matched as oldsely as practicable).



Bates: Figures on curves are Acceptable Quality Levels (A(L's) for annual importion.

TABLE X-E-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

								Acceptab	le Qualit	y Levela (	normal ins	pection)								
P.	1.0	4.0	6.5	10	1.0	4.0	6.5	10	IS	25	$\times$	40	$\left \times\right $	65	$\times$	100	$\times$	150	$\times$	250
	<b>r</b>	in percen	I defectiv	e)							p (in (	defecta pe	r hundred	unita)						
99,0	0.077	1.18	3.54	6.75	0.0771	1.15	J.35	6.33	13.7	22,4	27.0	36.7	46.9	57.5	79.6	96.7	132	150	219	2,18
95.0	0.394	2.01 *	6.60	11.3	0.395	2.73	6.29	10.5	20.1	30,6	36.1	47.5	59.2	71.1	95.1	115	153	173	246	266
90.0	0.807	4.17	8.60	14.2	0.810	4.09	0.4B	13.4	24.2	35.8	41.8	54.0	66.5	79.2	105	125	165	1BS	261	282
75.0	2.19	7.4	13.4	19,9	£.21	7.39	13.3	19.5	32.5	45.8	52.6	66.3	80.2	94.1	122	144	187	208	288	310
50.0	5.19	12.6	20.0	27.5	5.13	12.9	20.6	28.2	43.6	59.0	66.7	82.J	97.4	113	144	167	213	236	-321	344
25.0	10.1	19.4	28.0	36.1	10.7	20.7	30.2	39.3	57.1	74.5	83.1	100	117	134	167	192	241	266	355	379
10.0	16.2	26.8	36.0	44.4	17.7	29.9	40.9	51.4	71.3	90.5	100	119	137	155	190	217	269	275	3R9	414
5.0	20.6	31.6	41.0	49.5	23.0	36.5	48.4	59.6	80.9	101	m	130	150	168	205	233	286	313	409	435
1,0	29.8	41.3	50.6	58.8	35.4	\$1.1	64.7	17.3	101	123	134	155	176	196	235	264	321	349	450	477
	1.5	6.5	10	$\times$	1.5	6.5	10	15	25	$\mathbf{x}$	40	$\times$	65	$\times$	100	$\times$	150	$\times$	250	$\times$
								Acce	pinble Qu	olity Leve	la (sighten	erd inspec	tion)							

distribution and for percent defective computations, Painton for defects per bundred units, Note: B

.

μ.

42

÷, ÷

. 1 1 1

					<u> </u>		_			cceptab	te Quali	17 24-4	te (norma	al temper	tioe)								C	
Type of easepling plas	Jutire cample	1200 1200 1.0	1.0	1.5	$\times$	2.5	4.0	6.5	10	15	ಶ	$\times$	40	$\times$	65	$\times$	100	$\left \times\right $	150	$\times$	20	Higher thea 250	lativa sample	
	ei 1.0	Ac Re	Ac At	Ac Re	Ac Re	Ac Re	Ac R	nc Re	Ac Re	Ac fle	Ac Re	Ac Ri	AC Re	Ac Re	Ac Ro	Ac Re	Ac Pe	Ac Re	AC R	Ac Re	Ac Re	Ac Rø	51.5 <b>4</b>	
Single	13	▽.	0 1	مدا	Uas	مر ا	1 2	2 3	3 4	56	7 8	8 9	10 11	12 13	14 15	18 19	21 22	27 29	10 31	41 42	4 45	Δ	IJ	
		ᢦ		code	code	cede	0 2	0 3	1 4	2 5	3 7	3 7	5 9	6 10	7 11	9 14	11 16	15 20	17 22	20 29	ונ בק	۵.	4	
Doebte	16		•	Letter	Lotler	Latter	1 2	3 4	٤ 5	6 7	89	11 12	12 13	15 16	18 19	2] 24	25 77	34 35	35 12	52 SJ	56 57		16	
	 3	₽	•	D	C	P		. 2	• 3	. 4	0 4	0 4	0 5	0 6	1 7	18	29	3 10	4 12	6 15	6 16	Δ	3	
	6	·					• 2	0 3	03	15	16	2 7	3 8	3 9	4 10	6 IZ	7 14	10 17	11 19	16 25	17 27		6	ě
	9						0 2	د م	14	26	3 B	4 9	6 10	7 13	0 13	11 17	13 19	17 24	19 27	26 36	29 J9		,	2
Weblata	12						0 3	1 4	25	37	5 10	6 11	8 13	10 15	12 37	16 <b>2</b> 2	19 25	24 31	ע ה	37 66	<b>60 (9</b>		12	7
	15						1 3	2 4	36	5 8	7 1)	9 12	11 15	14 17	17 20	22 Z	3 P	32 37	36 40	(9 55	มห		15	
1	18						1 3	3 5	4 6	79	10 12	12 14	16 17	18 20	21 23	71 79	נג ונ	မပ	<b>5</b> (7	61 64	ଷ ଖ		10	~
	21						2 )	1 5	6 1	9 10	13 14	14 15	La 19	21 22	3 <b>%</b>	32 33	37 38	4 (9	53 54	12 13	77 78		21	
		Less thus 1.5	1.5	$\times$	2.5	4.0	6.5	10	15	25	$\times$	40	$\times$	65	$\times$	100	Х	150	$\times$	250	×	Higher thus 250		
									Acc	rptable (	Justity I	"evela (	lightene	d inspect	tion)								]	

.

.

# TABLE X-E-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: E

- A Use sext preceding sample else-cade letter for which acceptance and rejective numbers are evallable.
- V Use said subsequent example size code letter for which acceptance and rejection numbers are evallable.

ι.

- Ac . Acceptance aumber.
- Re Rejectios author.
- a . Acceptance not permitted at this sample size.

**FT1**,

### CHART F - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

(Curves for double and multiple sampling are matched as closely as practicable).



Note: Figures on curves are Acceptable Quality Levels (AQU's) for surged inspection.

### TABLE X-F-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

							Accer	rahte Quali	ly Levels (		ection)						
P.	0.65	2.5	4.0	6.5	10	0.65	2.5	4.0	65	10	15	$\times$	25	$\left[\times\right]$	40	$\overline{\times}$	65
		p lin p	ercent delec	ctive)					·	р (i	n delect <b>a</b> pe	r hundred i	prtits)				
99.0	0.0502	0.759	2.27	4.38	9.75	0.0503	0.743	2.18	4.12	8.93	14.5	17.5	23.9	30.5	37.4	51.7	62,9
95.0	0.256	1.01	4.22	7.14	14.0	0.256	1,78	4,09	6.83	13.1	19.9	23.5	30.8	38.4	46.2	62.2	74,5
90.0	0.525	2.69	5.64	9 03	16.6	0.527	2.66	5.51	8.72	15.8	21.3	27.2	35,1	43.2	51.5	68.4	81.2
75.0	1.43	4.8t	8.70	12 8	21.6	1.44	4 81	8.64	12.7	21.1	29.8	34.2	43.3	52.1	61,2	79.5	93, 1
50.0	3.41	8.25	13.1	181	27.9	3.47	6 39	13.4	18.4	28.4	38.3	43.J	53.J	63,3	73.3	9J.J	106
25.0	6.70	12.9	18.7	24.2	34.8	6.93	13.5	19.6	25.5	37.1	48.4	54.0	65.1	76.1	87,0	109	125
10.0	10.9	18,1	24.5	30.4	41.5	11.5	19.4	26.6	33.4	46.4	58.9	65.0	77.0	B8,9	101	124	10
5.0	13.9	21.6	28.3	34.4	45.6	15.0	23.7	31.5	38.8	52.6	65.7	72.2	84.8	97,2	109	133	151
1.0	20.6	28.9	35.8	42.1	53.2	23.0	33.2	42.0	50.2	65.5	80.0	87.D	101	114	127	153	172
	1.0	4.0	6.5	10	$\times$	1.0	4.0	6.5	10	15	Х	25	$\times$	40	$\times$	65	$\times$
							Acte	pauble Qual	licy Levels	(lightened i	aspection					•	

Nation

r	<b>T</b>	т <u></u>							_	~			_																	<u> </u>	-
	Curran								Acc	r pi sb	de Qu	olity	Lev	ela (s	IOF THE L	l (esp	ectio	-J												 	
Type of campling plan	lative sample	Less then 0.65	0.65	1.0	$\times$	1.5	2	5	4	.0	6	.5		10		15	>	<	2	5	>	<	4	0	>	<		65	lligher than 65	lative sample	•
		Ac Re	Ac He	Ac fle	Ac fle	Ac Re	Ac	Rr	ÂC	fte	Ac	ile	ÂĊ	Re	Ac	Re	Âc	Re	Ac	fi+	Ac	R•	Ac	Re	Ac	Re	Ac	fte	Ac flu		
Single	20	▽	0 1				•	2	2	3	3	4	5	6	7	8	8	9	10	11	12	1)	14	15	18	19	21	Z2	Δ	20	
	13	⊽	•	code		code	0	2	0	3		4	2	5	,	1	3	,	5	9	6	10	1	n	9	14	11	16	Δ	13	1
Double	26	(		Letter	Letter	Letter	f.	2	3	4	• .	5	6	7	•	9	11	12	12	13	15	16	18	19	2)	24	25	21		26	
	<b> </b>	<b> </b>		3	Н	G			├──			-									<b>├</b> —	-				-					+
	5	▽		Į				2		2		c		4	٥	•	0	4	0	5	0	\$	1	7	1	8	2	9	۵	5	
	10	j .		]	}		•	2	0	3	0	3	1	5	1	6	2	1	3	•	3	9	4	10	6	12	7	- 14		10	
	15						٥	2	0	3	1	4	2	6	3	8	4	9	6	10	1	12	8	13	11	17	נו	19		15	15
Vultiple	20		•	ĺ	· ·		0	3	1	4	2	5	3	1	5	10	6	11	8	13	10	15	12	17	16	22	19	ద		20	Į
I	25				{		1	3	2	4	3	6	5	8	7	n	9	12	n	15	14	11	17	20	22	25	75	29		25	
	30			ļ	}		1	3	3	5	4	6	1	9	10	12	12	14	14	17	18	20	21	บ	27	29	31	33		30	Ī
	a						2	3	4	5	6	7	9	10	13	14	14	15	18	19	21	22	ద	26	32	33	37	38		પ્ર	
	<b></b>	Less than 1.0	1.0	$\times$	15	2.5	4	0	6.	5	10			15	>	<	Z	5	>	<	4	0	>	<	6	5	>	<	Higher than 65		-
	ļ							. <u>.</u>	Acc	rpi L	le Q	ee lit	y Le	rets (	ighu	••ed i	n # [+* c	tion	)											}	

# TABLE X-F-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: F

A = Use next preceding sample size code letter for which acceptance and rejection numbers are available.

V = Use near subsequent sample size code letter for which acceptance and rejection numbers are available.

.

Ac = Acceptance number

He = Hejection number

* = = Uve single asophing plan above (or alternatively use code latter 3)

.

a - Acceptance not permitted at this sample size.

٠

.





Nuter Figures on curves on Acceptable Quality Levals (AQL's) for normal inspection.



							٨	ceptable (	Justily Lev	els (norma	Inspectio			3				
Ρ.	0.40	1.5	2.5	4.0	6.5	10	0.40	1.5	2.5	4.0	6.5	10	$\times$	15	$\left[\times\right]$	25	$\times$	40
		P	(in percen	ı defective	)						p (in	defects pe	r hundred i	rnits)				
99.0	0.0314	0.471	1.40	2.67	5.64	9.73	0.0314	0,464	1.36	2.57	5.58	9.08	11.0	14.9	19.1	23.4	32.3	39.3
95.0	0.160	1.12	Z.60	4.38	8.50	13.1	0.160	1.11	2.56	4.27	8.17	12.4	14,7	19.3	24.0	28.9	38.9	46.5
90.0	0.329	1.67	3.49	5.56	10.2	15.1	0.329	1.66	3.44	5.45	9.85	14.6	17.0	21.9	27.0	32.2	42,7	50.8
75.0	0.895	3.0)	5.42	7.98	13 ₁ 4	19.0	0.599	3,00	5.40	7.92	13.2	10.6	21.4	26.9	32.6	38.2	49,7	58.4
50.0	2.16	5.19	8.27	11.4	17,5	23.7	2.17	5.24	8.36	11.5	17,7	24.0	27.1	33.3	39.6	45.8	58.3	67.7
25.0	4.24	8.19	11.9	15.4	22.3	29.0	4.33	8.41	12.3	16.0	23.2	30.3	33.0	40.7	47.6	54,4	67.9	78.0
10.0	6.94	11,6	15.8	19.7	27.1	34.1	7.20	12.2	16.6	20.9	29.0	36.8	40.6	48.1 •	\$5.6	62.9	17.4	68.1
5,0	8.94	14.0	18.4	22.5	30.1	37.2	9.36	14.8	19.7	24.2	32.9	41.1	45.1	\$3,0	60.8	68.4	B3.4	94.5
1.0	13.4	19.0	23.8	28.1	36.0	43.2	14.4	20.7	26.3	31.4	41.0	50.0	54.4	63.0	n.3	79.5	95.6	107
	0.65	2.5	4.0	6.5	10	Х	0.65	2.5	4.0	6.5	10	X	15	$\times$	75	X	40	$\times$
								Acceptable	e Quality I	evels (tig)	htened ins	pection)						

flates, Elemental Aluerium inn und für parener örbersfor rangestationer Palaum für deforte par bandraf andre

46

. .

	Camp								Acc	epi s	ы. (	)wsli	iy L	evel	. (24	mul	lasp	ectio	•	_										Cuma
Type of exapling plan	lative sample	Less than 0.40	0.40	0.65	$\times$	1.0	1.3	5	2.	5	•	.o	6.	5		10	5	$\leq$		5	5	$\leq$	2	5	$\geq$	<		ω	Higher then 40	lative sample size
·		Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac	Re	Ac	Re	Ac	fl:	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	lle	Ac	Re	Ac	Re	Ac	Re	Ac fie	
Single	32	▼.	0 1				1	2	2	3	3	4	5	6	T	I	6	9	10	11	12	B	16	15	10	19	21	2	Δ	32
Double	20	▽		Use code Latier	Use code Letter	Use code Leizer	0	2	0	3	•	4	2	5	,	7	3	7	5	9		20	7	11	9	14	11	26	Δ	20
	40						ľ	2	3	4	4	5	6	7	8	•	n	12	12	13	15	16	18	19	23	24	26	<b>7</b> 1		40
	8	▽	•					2	•	2		3	•	4	0	•	0	4	0	s	0	6	1	1	1	8	2	9	Δ	8
	16						•	2	0	3	0	נ	1	5	•	6	2	7	3		3	9	٤	10	6	12	1	14		16
	24						0	2	0	3		4	2	6	3	0	•	9	6	10	7	12	8	13	hi.	17	13	19		24
Multiple	32	{					0	3	1	4	2	5	3	1	5	10	6	11	8	13	10	15	12	17	16	22	19	ð		32
	40						1	3	2	•	2	6	5	8	. 7	н	9	12	11	15	14	17	17	20	22	3	25	29		40
	- (8			i i			1	3	3	5	4	6	1	9	10	12	12	14	14	17	18	20	21	2)	27	29	33	ມ		- 40
	56						1	3	4	5	6	1	9	10	13	14	14	ŧS	18	[9]	21	22	3	26	32	33	<b>1</b> 77	38		56
<u> </u>	L	Leas than 0.65	0.65	$\times$	1.0	1.5	2.	5	4,1	。	6.5	5	10	)		<	1	\$	>	<	2	5	>	<	•	ລ	>	<	Higher than 40	
							•	Ac	ctpt	ble.	Qual	lity (	 Level	• (1	ight e	ned	inspe	rct lo	•)											]

### TABLE X-G-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: G

△ - Use mest preceding sample size code letter for which acceptance and rejection numbers are available.

- Ac m Acceptance aumber.
- Re liejection number.

.

 $\Box$ 

m. Use single compling plan above (or alternatively use code letter K)

.

a a Acceptance an permitted at this sample size.

47

.

٠

# MIL-SID-1052





	I							Acri	eptable Qu	aliy Lev	rts (norm	l inspect	ica)							
P	0.25	1.0	1.5	2.5	4.0	6.5	$\left \times\right $	10	0.25	1.0	1.5	2.5	6,0	6.5	$\times$	10	$\times$	15	$\times$	25
			P	lin percen	n defectiv	<del>,</del> )							ـــــــــــــــــــــــــــــــــــــ	(in defec	is per hui	dred unit	a)			
99.0	0.020)	0.300	0.886	1.68	3.69	6.07	7.36	10.1	0.0201	0.297	0.872	1.65	3,57	5.81	7,01	9,54	12.2	15.0	20.7	25.1
95.0	0.103	0.715	1.66	2.78	5.36	B 22	9.72	12.9	0.103 ·	0.711	1.64	2.73	5 23	1.96	9.39	12.3	15.4	19.5	24.9	29.8
90.0	0 210	107	2.22	3.53	6.43	9.54	11.2	14,5	0.211	1.04	2.20	3.49	6.30	9.31	10.9	14.0	17.3	20.6	27.3	32.5
75.0	0.574	1.92	3.46	5.10	8.51	12.0	138	17.5	0.575	1 92	3,45	5.07	8.44	11.9	13.7	17,2	20.8	24.5	31.8	37,4
50.0	1.38	3.33	5.31	7.29	11.3	15.2	17.2	21.2	1.39	3.36	5.35	7.34	11.3	15, 3	17.3	21.3	25.3	29.3	37.3	43.3
25.0	2.73	5. 29	7.69	10.0	14.5	18,8	21.0	25.2	2.77	5.39	7.84	10.2	14,8	19,4	21.6	26.0	30.4	34.8	43.5	49,9
10 0	4.50	7.56	10.3	12.9	17.8	22,4	24.7	29.1	4.61	7,78	10.6	13.4	18.5	23.5	26.0	30.6	15.6	40.3	49.5	56.4
50	5.82	9.14	12.1	14.8	19,9	24,7	27.0	31.6	5.99	9,49	12.6	15 5	21.0	25.3	28.9	33,9	38.9	43.8	53.4	60.5
1.0	8.00	12.6	15.8	18.7	24.2	29.2	31.7	36.3	9.2t	13.3	16.8	20 I	26.2	32.0	34,8	40,3	15.6	50.9	61.2	68,7
	D.40	1.5	2.5	4.0	6.5	Х	10	Х	0.40	1.5	2.5	40	6.5	Х	10	Х	15	X	25	$\times$
								Acc	entable Q	unlity Lev	els (tight	geed insp	ection)							

Notaj Bisamial distribution nood fas pareent delectivo compotations; Polasan las delects per Lundrod unita.

MIL-SID-105E

48

. •

										de (	Quelity	Levels	(100	rma) in	sbec	tios)			_									Cumu.	]
Type of ampling pfan	lative sample	Less this 0.25	0.25	0.40	$\times$	0.65	1.0	,	1.5	Ţ	2.5	6.0		6,5	>	<		10	>	<		5	>	<	2	s	Higher than 25	lative uumple alte	
		Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac	R.	Ac ft	. /	lc Re	Ac H	ie i	Ac Ae	Ac	Re	Ac	Re	Ac	Re	Ac	He	Ac	ßr	Ac	Ĥe	Ac fle		
Single	50	▽	0 1	l la e	Uae	Une	•	2	2 3	4	3 4	5	6	78	8	9	10	11	12	13	14	15	18	19	2)	22	Δ	50	
Doubte	32 64	▽	•	code Letter	code Letter	code Letter	0	2 2	D 3 3 4		 1 4 1 5	2 6	5	37 89	3 11	7	5 12	9 13	6 15	10 16	7	11	9 23	14 24	11 25	16 27	۵	32 64	
	13	ᢦ	•	G	к	J		2	• 2	†-	• 3		4	0 4	0	•	0	5	0	6	1		1	8	2	9	Δ		1
	26						•	2	с о	0	, 1	1	s	16	2	1	J	8	3	9	•	10	6	12	7	14		26	Į
	39						0	2	0 J	ŀ	4	2	6	36	•	9	6	10	7	12	8	13	п	17	13	19		39	ပြု
Nultiple	52			[			0	וי	1 4	2	! 5	1	7	5 10	6	"	8	B	10	15	12	17	16	22	10	25		52	
•	65						1	ונ	24	1	6	5.	8	7 11	9	12	11	15	14	17	17	20	22	ත	ъ	29		65	
	78						1	1	35	1	6	7	9	10 12	12	14	14	17	18	to	21	23	27	29	31	33		78	
	91			1			2	3	4 5	ľ	7	9 ti	0	13 14	14	15	18	19	21	22	25	27.	32	33	37	BL		19	ł
	L	Less then 0 t0	0.40	$\times$	0.65	1.0	1.5	 ;	2 5	Ţ	40	6.5		$\times$		10	>	<	1	5	>	<	2	5	<u>&gt;</u>	<	tligher than 25		٢
				·				^	Accep	t a b	le Quel	ily Levi	e1 a	lighte	ned i	a street	-1100	)			_								

.

# TABLE X-H-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: H

A . Use next preceding sample size code letter for which acceptance and rejection numbers are available.

- 👽 🔹 Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
- Ac. . Acceptance sumber
- Re . Rejection number
- B Use single sampling plan above (ov alternatively use code latter L)





									Ac	crptable	Quality	.evela (r	iormal in:	pection)								
P.	0.15	0.65	1,0	1.5	2.5	4,0	$\left \times\right $	6.5	$ \times$	10	0.15	0.65	1.0	1.5	2.5	4.0	$\left \times\right $	6.5	$\left \times\right $	10	$\times$	15
				P	(in percer	n defecti	ive)		· · ·						p (in d	electa pe	r hundred	l units)				
99.0	0.0126	0.187	0.550	1.04	2.28	1.71	4.51	6.17	7 68	9.76	0.0126	0.186	0.545	1.03	2.23	3.63	4,38	5.96	7.62	9.35	12.9	15.7
95.0	0.0641	0.445	1.03	1.73	3.32	5.07	6.00	7.93	9.89	11.9	0.0641	0.444	1.02	1.71	3.27	4.98	5.87	7.71	9.61	11.6	15.6	18.6
90.0	0.132	0.667	1.39	2.20	3.99.	5,91	6.90	8.95	11.0	13.2	0.13Z	0.665	1.38	2.18	3.94	5.82	6.79	8.78	10.8	12.9	17.1	20,3
75.0	0.359	1.201	2.15	3.18	5.30	1.50	8.61	10 9	13.2	15.5	0.360	1.20	2.15	3.17	5.27	7.45	8,55	10.8	13.0	15.3	19.9	23.4
50.0	0.863	2.09	3.33	4.57	7.06	9.55	10.8	13.3	15.8	18.3	0.866	2.10	3.34	4.59	7.09	9.59	10,8	13.3	15.0	18.3	23.3	27.1
25.0	1.72	3.33	4.84	6.30	9.14	11.9	13.3	16.0	18.6	21.3	1.73	3.37	4 90	6.39	9.28	12.1	13.5	16.3	19.0	21.7	27.2	31.2
10.0	2.84	4.78	6.52	8 15	11.3	14.3	15.7	18.6	21.4	24.2	2.88	4.86	6.65	8.35	11.6	14.7	16.2	19.3	22.2	25.2	30.9	35.2
5.0	3.68	5.79	7.66	9.41	12.7	15.8	17.3	20.3	23.2	26.0	3.74	5.93	7.87	9.69	13.1	16.4	18.0	21.2	24.3	27.4	33.4	37.0
1.0	5.59	8.01	10.1	12.0	15.6	18.9	20.5	23.6	26.6	29.5	5.76	8.30	10.5	12.6	16.4	20.0	21.8	25.2	28.S	31.B	38.2	42.9
	0.25	1.0	1.5	25	4.0	$\times$	6.5	$\overline{\times}$	10	$\times$	0.25	1.0	1.5	2.5	4.0	$\times$	6.5	$\times$	10	$\times$	15	$\times$
	f		•••••••	L	·				Acci	eptable (	Justity Li	evela (lip	hiened is	spection	) }	·						

Hoter Alsomial distribution wad for perves defective computations; Palooon for defects per handrad salts.

MIL-SID-105E

SO

.•

**___**___

TABLE X-J-Z -	SAMPLING PLANS	FOR SAMPLE	SIZE CODE L	etter: J

	Can						Ac	cepti	nble Ç	walli	, Le	vela (	BOT	nal in	•pec	:10=)													Casa-	]
Type of eccepting plas	lativa sampte	Lees (bee 0.15	0.15	0.25	$\times$	0.40	0.65	Τ	1.0	1	.5	1.	5	4.1	,	>	<	6.	5	>	<	1	0	>	<	1	15	Higher tasa 15	lativa anmpla	
	413.0	Ac Re	Ac fie	Ac fic	Ac Ba	Ac fle	Ac Ri	• •	c Re	Ac	Re	Ac	Re	Ac	R <b>e</b>	Åc -	R•	Ac	Re	Ac:	Rø	Ac	Re	Ac	fle	۸e .	R.	Ac Re		
Sizelo	80	▽	0 I				1 2	2	3	3	4	5	6	1	8	8	9	10	u	12	IJ	14	15	18	19	21	22	۵	80	
Domble	50	♥	•	Code Lotter	Code Letter	Code Letter	0 2	0	3		4	2	5	3	1	3	7	5	,	6	10	,	11	9	16	11	16	Δ	50	1
	100					r	1 2	3	4	٩.	5	6	1	8	2	11	12	12	13	15	16	18	19	2)	24	25	21		100	
	20	▽	•			•	• 2		2		3		•	¢	4	0	4	¢	5	0	6	ı	1	1	8	2	9	Δ	20	]
	40						• 2	0	3	0	3	3	5	1	•	2	7	3	3	3	,	٠	10	6	12	1	14	i	40	ļ
Muttinle	60						0 2	0	3	1	4	2	6	3	•	4	9	6	10	1	12	L	13	11	17	13	19		60	
	60						03	1	4	2	5	3	7	5	10	6	n	8	13	10	15	12	17	16	22	19	2		80	ļ
	100	ĺ ⁱ		ĺ .	1		13	2	4	3	6	5	•	1	<b>n</b> [	9	12	11	15	14	17	17	ະນ	22	22	ø	- 29		100	
	120						13	3	5	4	6	1	9	10	12	12	14	14	17	18	20	21	2	21	29	ગ	ມ		120	
	160						2 3	•	5	6	1	9	10	13	14	14	15	18	19	21	22	జ	25	22	ננ	37	38		140	
		Less then 0.25	0.25	$\times$	0.40	0.65	1.0		1.5	2	.5	4.(	0	>	<	6.	5	>	<	1	0	>	<	1	5	>	<	Higher then 15		-
							Acce	pi eb	ite Qu	liıy	Leve	la (ti	thie	ard i	nipe	cline	)													

.

A m Use post preceding sample size code letter for which acceptance and rejection numbers are available.

- 🚽 🚥 Use sett subsequent eauple size code letter for which acceptance and rejection numbers are available.
- Ac Acceptance number
- Re m Réféction number
- 🐘 🚥 Use singte compling plan above (or siternatively use tode latter H)
- n e . m Acceptance act permitted at this sample size.

. .

# CHART K - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

(Curves for double and multiple campling are matched as closely as practicable)



Note: Figures on curves are Acceptable Quality Levels (AQL's) he named inspection.

TABLE X-K-1	- TABULATED	VALUES FOR	OPERATING	CHARACTERISTIC	CURVES	FOR	SINGLE	SAMPLING P	LANS
-------------	-------------	------------	-----------	----------------	--------	-----	--------	------------	------

					Accept	able Quality Lev	ela (normal inaj	pection)				
P,	0.10	0,40	0.65	I.0	1.5	2.5	$\overline{\times}$	4.0	$\times$	6.5	$\times$	to
	p (in percen	i defective or d	efecta per hundr	ed units)		•		<u> </u>				
99.0	0.00804	0.119	0.349	0.659	1.43	2.32	2.81	3.82	4.68	5.98	8.28	10,1
95.0	0.0410	0.284	0.654	1.09	2.09	3.18	3.76	4.94	6.15	7.40	9.95	11.9
90.0	0.0843	0.425	0.682	1.40	2.52	3.72	4.35	5.62	6.92	8.24	10.9	13.0
75.0	0.230	0.769	1,382	2.03	3.38	4.78	5,47	6.90	8.34	9.79	12.7	14.9
50.0	0.555	1.34	2.14	2.94	4.54	6,14	6.94	8.53	10.1	11.7	14.9	17.3
25.0	1.11	2.15	3.14	4.09	5.94	7.75	8.64	10.4	12.2	13.9	17.4	20.0
10.0	1.84	3.11	4.26	5.34	7.42	9.42	\$0.4	12.3	14.2	16.t	19.8	22.5
5.0	2.40	3.80	5.04	6.20	0.41	10.5	11.5	13.6	15.6	17.5	21.4	24.2
1.0	3.68	5.31	6.72	8.04	10.5	12.8	18.3	16.1	18.3	20.4	24.5	27.5
	0.15	0.65	i.0	1.5	2,5	$\times$	4.0	$\times$	6.5	X	10	$\times$
	['				Accep	eable Quality Le	vels (tightened	inspection)		•		

Fotar All velves given in above table hand on Poinson descibution as an appresignation to the Riscolal.

	<u> </u>	1								ы.	Qualit	 7 L	eveta.	(ac	med	inn		 (=0											. <u></u>	<u>_</u>
Type of sampling plum	Comu- lative somple	Less than 0.10	0,10	0.15	$\times$	0.25	0.4	,	0.65	ŗ	1.0	Ĩ	1.5		2.5	5	>	<	4.	0	>	<	6	.5	>	<	1	0	Higher than 10	Carro- tative assepte
	#1#@	Ac Re	Ac Re	Ac Ae	Ac fle	Ac Re	Ac	Rø	Ac F	le	Ac f	4	Ac F	1.	Ac	He	Ac	Re	Ac	Rr	Ac	Re	Ac	fle.	Ac	He	Ac	He	Ac Re	
Singte	125	▽	0 1					2	2	3	3		5	6	1		8	9	10	n	12	13	14	15	18	19	21	22	۵	125
	ಖ	▽	•	(000	Code	code	0	,	o :	3		•	2,	5	3	7	3	7	5	9	6	10	1	n	9	14	n	16	Δ	80
Doeble	160			Letter	Letter	Letter	1	2	3	•	• !	۶  	6	7	8	9	n	12	12	13	ıs	16	18	19	ช	!-	26	27		160
				<b>'</b>	N I	L.	•	 ,		-†		Ţ			0		0				0		,	,	 1		,		Δ	
	м м	v		ļ				2	a :	,	0		1	s	•	6	1	1	3	-	1	9		10	6	12	7	14	_	
	946						0	2	0	,			2	6	3	8	4	•	6	10	1	12	8	IJ	11	17	13	19		96
Valtiple	129						0	3	1	ļ	2 5	,	3	,	5	10	6	n		13	10	15	12	17	16	22	19	25		129
	160						1	1	2	4	3 6	4	5	•	1	11	9	12	t i	15	14	17	17	20	22	3	3	29		160
	192						I	1	з :	s	4 (	-	1	9	10	17	12	14	14	17	10	20	21	บ	27	29	31	u		192
	224						2	2	4 9	s]	6	'	9 1	0	13	н	14	15	18	19	21	22	25	26	32	33	37	38		724
	L	Less thin D.15	0.15	$\times$	0 25	0. 40	0.6	,	1.0	t	1.5	T	2.5	1	$\succ$	<	4.	0	>	<	6	5	>	<	1	0	>	<	Higher than 10	
								Ac	repteb	ale	Quelis	y L	evels.	(14	ghten	ed i	#1 pro	cliq	.)											

٠

# TABLE X-K-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: K

- △ . Use sest preceding sample size code letter for which acceptance and rejection numbers are available.
- V . Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
- Ac w Acceptance number
- Re · Rejection number
  - ... Use single assopling plan above (or alternatively use code latter #)

MIL-SID-1052

### CHART L - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS



### TABLE X-L-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

					Acceptab	la Quality Law	ile (sormal lasp	ection)				
Ρ.,	0.065	0.25	0.40	0.65	1.0	1.5	$ \times $	2.5	$ \times $	4.0	$\times$	6.5
	p lin parcent	defective or d	efecta per bande	ed unite)								
99.0	0.00503	0.075	0.218	0.412	0.893	1.45	1.75	2.39	3.05	3.74	5.17	6.29
95.0	0.0256	0.178	0.409	0,683	1.31	1.99	2.35	3.08	3.64	4.62	6.22	7,45
90.0	0.0527	0.256	0.551	0.872	1.58	2.33	2.72	3.51	4.32	5.15	6.84	0.12
75.0	0.144	0.481	0.864	1.27	2.11	2.96	3.42	4.31	5.21	6.12	7.95	9.34
50.0	0.347	0.839	1.34	1.84	2.84	3.84	4.33	5.13	6.33	در. ۲	9.33	10.8
25.0	0.693	1.35	1.96	2.55	3.71	4.43	5.40	6.51	7.61	B.70	10.9	12.5
10.0	1.15	1.94	2.66	3.34	4.64	\$.89	6.50	1.70	8.89	10.1	12.4	16.1
5.0	1.50	2.31	3.15	3.68	5.25	6.57	1.22	8.48	9.72	10.9	13.3	15.1
1.0	2.30	3.32	4.20	5.02	6.55	8.00	8.70	10.1	11.4	12.7	15.3	17.2
	0.10	0.40	0.65	1.0	1.5	$\times$	2.5	$ \times $	4.0	$\sim$	6.5	X
				. <u></u>	Accept	able Quality Le	vela (tightened	(napection)				

الد اند Hener All values given in show table based on Poinces Southeties to an approximation to the Dis

MIL-STD-105E

	Cum.						A	ceptable	Quality	Levela (m	ormal iner	pection)							Сеница	
.Type of sampling plan	tative sample aize	Less thus 0.065	0.065	0.10	$\times$	0.15	0.25	0,40	0 65	1.0	1.5	$\times$	2.5	$\times$	4.0	$\times$	6.5	fligher than 6.5	talive sample sise	
	[	Ac He	Ac Re	Ac He	Ac fle	Ac Be	Ac Re	Ac Re	Ac Re	Ac fle	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac fle	Ac Re		
Singte	200	▽	0 1				1 2	2 3	3 4	S 6	78	89	10 11	12 13	14 15	16 19	21 22	Δ	200	
	125			code	Code	Code	0 2	0 3	1 4	2 5	3 7	3 7	5 9	6 10	7 11	9 16	11 16	Δ	125	
Dosble	250	Ň			Letter	Lattier M	1 2	3 4	4 5	6 7	8 9	11 12	12 13	15 16	18 19	23 24	25 27		250	
	50	▽	•	] ^			• 2	. 2	. 3		0 4	0 4	05	0 6	1 7	1.8	2 9	Δ	50	
	100			1			• 2	0 3	C 0	1 5	1 6	2 7	3 8	3 9	4 IO	6 12	7 16		100	3
	150						0 2	6 0	1.4	2 6	ם נ	4 9	6 10	7 12	0 13	10 17	13 19		150	5
Votriple	200						0 3	1 4	2 5	3.7	5 10	6 11	8 13	10 15	12 17	16 22	19 25		200	Ę
	250						13	2 4	3 6	5 .	7 11	9 12	11 15	14 17	17 20	22 25	* *		250	101
	300						1 3	3 5	4 6	7 9	10 12	12 14	14 17	18 20	21 23	27 29	ע וו		300	ŭ
	350						2 3	4 5	6 7	9 10	10 14	14 15	18 19	21 22	25 26	32 33	37 38		J50	
	<b></b>	Less then 0.10	0.10	$\times$	0.15	0.25	0.40	0 65	1.0	1.5	$\times$	2.5	$\times$	4.0	$\times$	6.5	$\times$	tligher than 6.5	·	
								Lcceptabl	e Qualit	y Levels (	lightened	inspectio	in)							

### TABLE X-L-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: L

A m Use next preceding sample size code latter for which acceptance and rejection numbers are available.

- 👽 🛥 Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
- Ac a Acceptance number
- Re 📼 Rejection number
- on Use single sampling plan above (or alternatively use code letter #)
- a m Acceptance not permitted at this sample size.

•

.

CHART M - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS



OUAT.ITY OF SUBMITTED LOTS (p. in percent defective for AQL's <10; in defects per hundred units for AQL's >10) Note: Figures of carros we Acceptable Quality Levels (AQL's) for normal tespection.

IABLE A-M-I - IABULATED VALUES FOR OPERATING CHARACTERSTIC CORVES FOR SINGLE SAMP
-----------------------------------------------------------------------------------

					Acceptable Qu	ality Levels (no	rmal inspection)	1				
₽ŧ	0.040	0.15	0.25	0.40	0.65	1.0	$ $ $\times$	1.5	$\times$	2.5	$\left  \times \right $	6.0
	p (in percent a	defective or in (	defects per hun	dred units)				· · · · · · · ·				
99.0	0.00319	0.0472	0.138	0.261	0.567	0.923	1.11	1.51	1.94	2.37	3.28	3.99
95.0	0.0163	0.113	0.260	0.434	0.830	1,26	1,49	1.96	2,44	2.94	3.95	4.73
90.0	0.0335	0.169	0.350	0.534	1.00	1.48	1.72	2.23	2.74	3.27	4.34	5.16
75.0	0.0913	0.305	0.548	0.805	1.34	1.89	2.17	2.74	3.31	J.89	5.05	5.93
50.0	0.220	0.53)	0.849	1.17	1.60	2.43	2.75	3.39	4.02	4.66	5.93	6.80
25.0	0.440	0.855	1.24	1.62	2.36	3.07	3.43	4.13	4.83	5.52	6.90	7.92
10.0	0.731	1.23	1.69	2.12	2.94	3.74	4.13	4.89	5.64	6.39	7.66	8.95
5.0	0.951	1.51	2.00	2.45	3.34	4.17	4.58	5,38	6.17	6.95	8.47	9,60
1.0	1.46	2.11	2 61	3.19	4,16	5.08	5.52	6.40	7.24	8.09	9.71	10.9
	0.065	0.25	0.40	0.65	1,0	$\times$	1.5	$\times$	2.5	$\times$	4.0	$\times$
					Acceptab	le Quality Level	<ul> <li>(tightened insp</li> </ul>	pection)				

. Natural sector and the sector sector sector and the Poinces distribution on an approximation to the Biastald.

				·					Acc	epts	ble Q	huuli	ity Le	veli	n (no	/m.s.)	insp	ectio	m)											
Type of compliag plan	Lang. Lative sample	Less then 0.040	0.040	0.065	$\times$	0.10	0.1	5	0.2	5	0,4	0	D.	5	1.	.0	>	<	1	.5	>	<	2	.5	2	<	•	.0	Higher than 4.0	Lumu- lative sample
	1110	Ac Re	Ac Re	Ac fle	Ac ile	Ac Re	Ac	fle	Ac I	n.	Ac	ile	Ac	Re	Ac	Re	٨c	Ne	Ac	Re	Åe	Re	Ac	Re	Ac	Br	Ac	Re	Ac He	4128
Single	315	▽	0	1/100		ttee	1	2	2	J	3	4	5	6	7	8	8	9	10	11	12	13	14	15	18	19	21	2	Δ	315
	200	▽		code Letter	code Letter	code Letter	0	2	0	,	1	•	2	5	3	7	3	,	5	9	6	10	,	n	•	14		16	Δ	200
Double	400			],		N	I	2	3	٩	•.	5	6	7	8	9	11	12	12	13	15	16	18	19	ນ	24	26	77		400
	80	▽	•				•	2	•	2	•	3		4	0	4	0	4	0	5	0	6	1	7	ı	B	2	9	Δ	80
	160		}				•	2	0	3	0	3	ŧ	5	ł	6	2	7	3	8	3	9	4	10	6	12	7	-14		160
	240						0	2	0	3	ł	•	2	6	3	•	4	9	6	10	1	12	8	IJ	11	17	13	19		740
Wultiple	320						0	J	I	4	2	5	3	7	5	10	6	п	8	IJ	10	15	12	17	16	22	19	ສ		320
	400						3	3	2	•	3	6	5	8	1	u	9	12	11	15	14	.11	17	20	22	ಶ	25	<b>7</b> 7		400
	480						ł	د	3	s	4	6	1	2	10	12	LZ.	-14	14	17	18	20	21	บ	27	29	31	33		480
	560						2	3	4	5	6	7	•	10	13	14	64	15	18	19	21	2	వ	26	32	ນ	37	м		560
	L	Le 12 1818 0.055	0.065	$\times$	0.10	0.15	0.2	5	0.40		0.65	ŀ	1.0		>	<	١.	<u>.</u> s	>	<	2	.5	>	<	٩.	0	>	<	Higher than 4.0	
								Å	cepte	ble	Quali	iy l	e vel	s (ti	<b>gik</b> er	xd i	Aspe	cilei	4											

## TABLE X-M-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: M

.

- △ Use next preceding sample size code letter br which acceptance and rejection numbers are available.
- 👽 📼 Use next subsequent sample size code letter for which acceptance and rejection numbers are svailable.
- Ac Acceptance number.
- He Hejection number.
- Use single sampling plan above (or alternatively use cedu letter Q)
- a a Acceptance not permitted at this sample atte.

MIL-SID-105E



# TABLE X-N-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

					Acceptal	ble Quality Levi	sta (normal Inspr	ection)				
P.	0.025	0,10	0.15	0.25	0.40	0.65	$[\times]$	1.0	$\mathbf{\nabla}$	1.5	$\overline{\times}$	25
I	p (in percent	t defective or ir	n defecia per hu	ndred units)		<u></u>	·	L	·	<u> </u>		<u></u>
99.0	0.00201	0.0297	0.0872	D,165	0.357	0.581	0.701	0.954	1.22	1.50	2.07	2.51
95.0	0 9103	0.711	0.164	0.273	0 523	0.796	0.939	1.23	1.54	1.85	2.49	2.96
90 0	0.0211	0.105	0.220	0.349	0 630	0.931	1.09	1.40	1.73	2.06	2.73	3.25
75.0	0.0575	0.192	0.345	0.507	0, 844	1.19	1 37	1.72	2.08	2.45	J.18 .	3.74
50.0	0.139	0.336	0.535	0.734	1.13	1.53	1.73	2.13	2.53	2.93	3.73	4,13
25.0	0.277	0.539	0 784	1,02	1.48	1.94	2.16	2.60	3.04	3.48	4.35	4.99
10.0	D 461	0.778	1.06	1.34	1.85	2.35	2.60	3.08	3.56	4.03	4.95	5.64
5.0	0 599	0.949	1.26	1,55	2.10	2.63	2.89	3.39	3.89	4.38	5.34	6.05
1.0	0.921	1.33	1.69	2,01	2.62	3.20	3.48	4.03	4.56	-5.09	6.12	6.87
	0.040	0.15	0 25	0,40	0.65	$\sim$	1.0	$\overline{\times}$	1.5	$\overline{}$	2.5	$\overline{\mathbf{X}}$
				·····	Ассер	table Quality Le	weis ftightened	inspection)	A,		L	<u> </u>

Natur. All values given in above table based on Patases distribution on an approximation to the Binamigl.

TABLE X-N-2	- SAMPLING	PLANS FOR	SAMPLE	SIZE	CODE LETTER:	N

	C====-							Acc	eptable	Q	vellty L	ave]	la (aca	rum I	iaap	ctio	ı)		_										Cent
Type of sampling plan	turive sample	Less thus 0.025	0,025	0.040	$\times$	0.065	0.10	>	0.15		0.25	0	0.40	0	.65	>	<	1	. 0	>	<	1.	.5	>	<	2	4	Higher Line 2.5	lative sempte
	#L.44	Ac Re	Ac Re	Ac Re	Ac fle	Ac Ro	Ac I	R.	Ac A	-	Ac fle	Ac	Re	Ac	Re	Ae	Re	Ac	Re	Ac	Rø	Ac	A.	Ac	Re	Ac	R.	Ac Ro	0.120
Siagle	500	▼.	0 1		llas	llan	1	2	2 3	•	j i	5	6	,	8	8	9	10	•11	12	IJ	14	15	10	19	21	22	۵	500
	315	_		code		code	0	,	0 3	Ţ	1 4	2	5	,	1	3	1	5	9	6	10	,	11	9	34	u	16	Δ	315
Deuble	630	v		Latter	Lotter	Lating	1	2	3 4		4 5	ŀ	i	•	,	n	12	12	ม	15	Lő	tø	19	23	24	ы	27		630
	125	▽	•		Ű	P .	•	2	• 2		• 3	Γ.	4	0	4	Q	4.	0	5	0	. 6	1	1	1		2	9	Δ	125
	250						•	2	0 3		0 3	1	5	1	6	2	1	3	I	3	9	4	10	6	12	1	14		250
	375						0	2	03		14	2	6	3	8	4	9	6	10	1	12	•	ม	11	17	13	19		375
Weitipie	500						0	۱	1 4		75	3	٦	s	10	6	11	8	13	10	15	12	17	16	22	19	2		500
	6ద			{			1	۱	2 4		36	5	t	7	n	9	12	n	15	14	17	17	20	22	2	z	29		625
	750						1	2	35	1	1 6	1	9	10	12	12	14	14	17	10	20	21	23	11.	29	11	α		750
	875						2	3	4 5		67	•	10	13	11	14	15	10	19	21	2	ಸ	26	22	ננ	37	38		875
		Less thes 0.040	0.040	$\times$	0.065	0.10	0. [!	5	0.25	Ţ	0.40		).65	5	<	1.	0	5	<	1.	5	>	<	2	.5	>	<	Hirber chan 2.5	
							•	٨	cceptal	÷k	Quality	Le	rela (i	ilght	read	lsep	rctie	•)											

,

🛆 📾 Use sext preceding sample size code letter for which acceptance and rejection anabers are available.

- 👽 . m Use next appropriat sample size code letter for which acceptance and rejection numbers are available.
- Ac an Acceptance number
- Re 🗠 Rejection number
- * 👝 Use single compling plan above (or elterestively use code letter R)

.

.

. . Acceptance ast permitted at this sample size,



TARLE Y-P-1	_	TABLE ATCO.	VALUES	EUD	005047180	CHARACTERICTIC	CUDVEC	<b>r</b> 00	CINCLE	CANDI INC. DI AL	AIC.
TABLE A-P-I	-	IADULAILU	VALUES	FOK.	UPERATING	CHARACIERISTIC	CURVES	FOR	SINGLE	SAMPLING PLA	NS -

					Acceptabl	e Quality Level	s (normal laspec	tion)			<u> </u>	
Pa	0.015	0.065	0.10	0.15	0.25	0.40	$\times$	0.65	$\times$	1.0	$\times$	1.5
	plin percent d	efective or defe	cts per hundred a	mits)								-
99,0	0.00126	0.0186	0.0545	0.103	0.223	0.363	0,438	0.596	0.752	0.935	1.29	1.57
95.0	0.00641	0.0444	0.102	0.171	0.327	0.498	0.587	0.771	0.961	1.16	1.56	1.86
90.0	0.0132	0.0665	0.138	0.218	0.394	0.582	0.679	0.878	1.08	1.29	1.71	2.03
75.0	0,0,160	0,120	0.216	0,317	0.527	0.745	0.855	1.08	1.30	1.53	1.99	2.34
50.0	0.0866	0.210	0.334	0.459	0.709	0.959	1.09	1.33	1.58	1.63	2.33	2,71
25.0	0.173	0.337	0.490	0.639	0.928	1.21	1.35	1.63	1.90	2.17	2.72	J.12
10.0	0.288	0.486	0.665	0.835	1.16	1.47	1.62	1.93	2.22	2.52	1.09	3.52
5.0	0.374	0.593	0.787	0.969	1.31	1.64	1.80	2.12	2.43	2.74	3.34	3.78
1.0	0.576	0.830	1.05	1.26	1.64	2.00	2.18	2.52	2.85	3.18	J.A2	4.29
	0.025	0.10	0.15	0.25	0.40	$\times$	0.65	$\times$	1,0	$\times$	1.5	$\times$
	[		· · · · · · · · · · · ·		Accep	Mable Quality L	evels (lightened	inspection)				

٠

Soup All values gives in the ve table based on Patence distribution as an appreciantion to the Simulal.

MIL-SID-105E

TABLE X-P-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: P

.

.

į			8	8	1000	ĝ	Ş	8	ŝ	8001	1200	8		
	1.5 1.5	Re	٩	4		Q								
	<b>-</b>	Re Ac	ព	=	n	- 6	1	61	N	8	8	8	$\overline{\nabla}$	
	12	۲	12	=	56	~	~	2	61	Я	a	8	^	
	$\overline{\nabla}$	ž	61		24	8	12	17	а	Ŋ	8	2	~	
	$  \wedge  $	× 1	81	•	្ព	-	٠	Ξ	16	2	R	8	-	
	0	Re	15		19	1	0	n	11	8	2	8	Y	
		Åc.		~	=	-	-	-	12	1	21	Ņ	$  \wedge  $	
	$ \mathbf{Y} $	2	11	2	16	و	\$	13	15	11	8	ม	9	
		ž	2	•	2	•	-	~	2	Ξ	2	2		
	3	2	=	6	2	Š	-	2	3	15	11	61	X	
	°	ž.	2	<b>m</b>	13	°	_	<u> </u>	•	=			$\square$	1
Ĵ	X	2	6		13	-	~	•	=	2	=	5	0.65	a 1
		<u> </u>			=	-		<u> </u>			<u> </u>	<u> </u>		l la eç
al la	3	Ĕ	-		•	-		-	2	=	2	±	IX	
2		L ÷							~		<u> </u>		$\uparrow$	
els (	X	<u>۴</u>	-	1		Ť	•.	•			•	9	8	Ī
<u>4</u>		<u> </u>	~~~	~~~~		•	-	~~	<u> </u>	<u> </u>	-		<b></b>	ذ
l iller	12	Ē	-	•	*		-	-	~	•	-	<b>6</b> -1	N.	Ĩ
6	<u>ل</u> ــــــــــــــــــــــــــــــــــــ	<u> </u>					<u> </u>	_	~		-			
49	0.0	2			•	~	-	~	•	-	*3	vi vi	5.	
Acc	<u> </u>	<u> </u>	<u>~</u>	<u> </u>	-	•	<u> </u>							Ę
	12	Ē	~		••	~		~	~	-	-	~	9	1
		Ž		<u>_</u>		•	-	-	•	-	-	<u>~</u>		
	0.040	۳ ۲				•						•	0.065	
	X	2				5							0.00	
	R R	<u> </u>		1 8									$\overline{\mathbf{v}}$	
	ŏ	¥ #			3	- 1							$\frac{1}{2}$	ļ
	0.01	2	0		•	•							0.02	
	0.010	e Be	D	D		D								
Į		÷	8	8	8	ន្ត	ŝ	8	8	801	0021	891	<u> </u>	I
		L	Single						Multiple					

- Use acti preceding sample siza code fetter for which acceptance and rejection numbers are available.
- Use ners subsequent sample size code letter for which acceptance and rejection numbers are available. 1
  - .
    - Acceptioner number. •
      - U
- •
- Rejection anaber. Use tingle sampling plan above. Acceptance not permitted at this nample alsa. . **⊲⊳**₹≝..

P

61

## CHART Q - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS



# TABLE X-Q-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

[					Accepta	ble Quality Lev	els (somel insp	ection)				•
Pa	0.010	0.040	0.065	0.10	0.15	0.25	$\times$	0.40	$\left[\times\right]$	D.65	$\times$	1,0
	p (in percen	it defective or a	fefecta per hundr	ed units								
99.0	0.000804	0.0119	0.0349	0.0659	0.143	0.232	0.281	0.382	0.468	0.598	0.829	1.01
95.0	0.00410	0.0284	0.0654	0.109	0.209	0.318	0.376	0 494	0.615	0.740	0.995	1.19
90.0	0.00843	0.0425	0,0682	0.140	0.252	0.372	0.435	0.562	0.692	0.824	1.09	1.30
75.0	0.0230	0.0769	0.138	0.203	0.339	0.476	0.547	0.690	0.834	0.979	1.27	1.49
50.0	0.0555	0.134	0.214	0.294	0.454	0.614	0.694	0.853	1.01	1.17	1.49	1.73
25.0	0.111	0.215	0.314	0.409	0.594	0.775	0.864	1,04	1.22	1.39	1.74	2.00
10.0	0.184	0.311	0.426	0.534	0.742	0.942	1.04	1.23	1.42	1.61	1.99	2.25
5.0	0.240	0.380	0.504	0.620	0.841	1.05	1.15	1.36	1.56	1.75	2.14	2.42
1.0	0.368	0.53)	0.672	0.804	1.05	1.28	1.39	1.61	1.83	2.04	2.45	2.15
	0.015	0.065	0.10	0.15	0.25	$\times$	0.60	$\times$	0.65	$\sim$	1.0	$\sim$
			· · · · · · · · · · · · · · · · · · ·		. Accep	able Quality Le	vels (tightened	intpection)				

Nates All refere gives to above table based on Poleson distribution on an appreximation to the Standal

.

TABLE X-Q-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER, Q

.

•

	MIL_SID-105E														
ji <b>i</b> :			9 <u>7</u> 1	ĝ	1600	SIC	83	34	97	1575	1690	82			
	Hicker the	Ac Re	^	D D D P P P P P P P P P P P P P P P P P							190. 1919-1 1919-1				
	0.1	8	<b>¤</b>	16	5 11	•	-	61 1	R	3	8	8	X		
	<b>  </b>				<u>R</u>				<u> </u>	<u>N</u>			+++	i	
	IX	а а	51 9	-	12 6		\$	-	ក •	х N	к т	ਸ ਬ	2		
	$\vdash$	<u> </u>			•	-	0			<u>~</u>	~	8			•
	3.0	Ac R	-		1 1	-	•	-		11 2		10	X		
	$\overline{\nabla}$	÷.	11	2	16	9	•	12	13	2	ิล	7	2		[
ĺ	١Ă	2	1		<b>S</b>	•	-	-	2	z	2	=	8		
	9	2	=	•	3	~	•	2	3	15	=	\$	$\nabla$		
ĺ	ō	2	2		2	6	-	•	-	Ξ	Ξ	2	Å	-	
2	БЛ	-	•	~	12		-	•	=	2	1	2		월	
	[ X ]	Ac		-	=	•	**	•	÷	•	12	2	9.9	ta spe	Ì
j,	R	P.	•	-	6	-	-9	•	5	Ξ	12	1	TV		
1	ö	Ŷ	~	-	•	0	-	-	\$	-	2	2	$ \Lambda $	ighe -	
	51.0	R.			~	*	uit .	Ŷ	~	•	•	2	ņ	÷.	
Ę	Ľ	¥	5	~	•	•	_	~	-	Ś		۴	<u> </u>	٦.	ł
elly L	0.10	. Re	-	-	wh.,	•	•	•	10	9	•	-	513	- filled	
ð	Ľ	×	~			<b></b>	•		•	-	-	<u> </u>	Ļ	•	ļ
- Andr	0.065	e Be			*	~	-	-	•	•	•	-	0.10	sceptul	
¥ Cč		<u> </u>												Ă	1
	0.040				-		•	0			-		0.065		
	0.025	ke Re		<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ς			0100.0		ļ				
	X	Ac R.		5 8		÷						<u> </u>	0.025		
	\$10.0	Ac Re	;	<u> </u>		<u> </u>							X		ļ
	0.010	Ac R.	-		•	•							0.015		
	X	re Pe		3							_		0.010		
j	iii	1	2	8	0091	SIC	6,9	3	1280	1575	86	8		•	•
i i			shedo		Deeble				Multiple						

- A In Use sets preceding sample also code letter for which accorptance and rejection anothers are available.
   Ac Accorptance another
   Bejection another
   Bejection another
   Bejection another
   Bejection another
   Bejection another
   Bejection another
   Bejection another

  - 0

# TABLE X-R-Tables for sample size code letter: R







				Accep	table Quality Le	vels (normat lasp	rction)				
P.	0.025	0.040	0.065	0.10	0.15	$\times$	0.25	$\left  \times \right $	0.40	$\times$	0.65
	p (in percent d	elective or delec	to per hundred un	ils)							
99.0	0.00743	0.0218	0.0412	0.0892	0.145	0.175	0.239	0.305	0,374	0.517	0.629
95.0	0.0178	0.0409	0.0683	0.131	0.199	0.235	0.309	0.384	0.462	0.522	0.745
90.0	0.0266	0.0551	0.0872	0.158	0.233	0.272	0.351	0.432	0.515	0.684	0.812
75.0	0.0481	0.0864	0.127	0.211	0.298	0.342	0.431	0.521	0.612	0.795	0.934
50.0	0,0839	0.134	0.181	0.284	0,383	0.433	0.533	0.633	0.733	0.933	1.08
25.0	0,135	0.196	0.255	0.371	0.484	0.540	0.651	0.761	0.870	1.09	1.25
10.0	0.194	0.266	0.334	0.464	0.589	0.650	0.770	0.889	1.01	1.24	1.41
5.0	0.237	0.315	0.388	0.526	0.657	0.722	0.848	0.972	1.09	1.33	1.51
1.0	0.332	0.420	0.502	0.655	0.800	0.870	1.02	1.14	1.27	1.53	1.72
	0.040	0.065	0.10	0.15	$\times$	0,25	$\times$	0.40	$\times$	0.65	X
			<u></u>		Acceptable Quali	iy Levels (lighte	ned inspection)				

Note: All values gives in above table based on Poisson distribution on an approximation to the Discussial.

# TABLE X-R-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: R

	<b>C</b>									,	lect	table	Qual	iry L	avels	(non	ni i		tice)											
Type of sampling plan	tative tample	$\times$	·	0.010	0.015	$\times$	0.02	5	0.0	10	0.0	×5	0.1	0	0.1	5	>	<	۵.	8	X	ĺ	0.40	Ţ	$\times$	$\leq$	· 0.	ర	Higher than D.65	Lueu- Intive sample
		Ac F	10	Ac Ro	Ac Re	Ac Re	Ac	He	Ac	Re	Ac	Re	Ac_	R.	Ac_	Re	Ac	Re	Ac	Re	Ac F	le l	Ac F	ie i	Ac	Ĥ۴	Ac	Re	Ac Re	aise
Single	2000	0	•				ł	2	2	3	3	4	5	6	7	6	6	9	10	п	12 1	3	14 1	5	18	19	21	2	۵	2000
Double	1250 2500	•		code (auer	code Lestier	toda fætter	0 1	2	0 3	•	1	4 5	2 6	5	3	7 9	1) 1	7 12	5 12	و در	6 I 15 I	6	7 1 18 J	• •	, 1)	14 24	וו אל	16 27	۵	1250 2500
Maftiple	500 1000 1500 2000 2500 3000 1500	•		U	•		• • • • • • • • • • • • • • • • • • •	2 2 3 3 3	• 0 1 2 3 4	2 3 4 4 5 5	0 L 2 3 6	3 7 4 5 6 6 7	• 1 - 2 3 5 7 9	4 5 6 7 8 9	0 1 3 5 7 10 13	4 6 10 11 17	0 2 4 6 9 12	4 7 11 12 14	0 3 6 8 11 16 18	5 8 10 13 15 17	0 3 7 1 10 1 14 1 16 <del>7</del> 21 2	6 2 3 1 7 1 7 1 7	J 4 14 12 1 17 2 21 2 25 2	7 0 3 7	j 6 11 16 22 27 32	۹ 12 17 22 25 79	7 7 13 19 25 31 37	9 14 19 25 29 33 38	Δ	500 1000 1500 2000 2500 3000 1500
	0.010 0.015 × 0.023 0.060 0.065 0.10 0.15 × 0.25 × 0.40 × 0.65 × 0.65 Acceptable Questity Levels (tighteend inspection)								Higher chen 0.65	<i>I</i>																				

٠

- Ac a Acceptance symbol.
- Ro a Rejection under.

٠

20

- Use single sampling plas above.
- # Acceptance and permitted at this sample size.

MIL-SID-105E

.

	Carro	Acceptable Quality Level (sormal inspection)							
Type of sampling plan	letive sample	$\times$							
	size	Ac	Re						
Single	3150	1	2						
Double	2000	0	2						
20211	4000	1	2						
	600		2						
	1600		2						
	2400	0	2						
Multiple	3200	0	3						
I	4000	1	3						
	4800	1	3						
	5600	2	3						
		0.	025						
		Acceptable (tightened i	Quality Level aspection)						

MIL-SID-105E

-•

.

- Re = Rejection number
- # = Acceptance not permitted at this sample size.

.

.
## 6. NOTES

6.1 Intended Use. Sampling procedures and tables for inspection by attributes are intended to be used in the acquisition of Defense material.

6.2 Subject Term (Key Word) Listing.

Acceptable Quality Level (AQL)

Average Outgoing Quality (AOQ)

Defect

Defective

Lot or Batch

Process Average

Sample

Sampling Plan

Unit of Product

6.3 <u>Changes from Previous Issue</u>. Vertical lines or asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

## MIL-STD-105E

## CONCLUDING MATERIAL

Custodians: Army - AR Navy - OS Air Force - 23 Review Activities: Army - MI, EA, TE, AV, ER Navy - AS, EC, MC, OM, SA, SH, TD, YD DLA - ES, GS, SS OSD - IP, SO User Activities: Army - ME DLA - ES, SS

Preparing Activity: Army - AR

(Project QCIC-0085)

INSTRUCTIONS: In a continuing effort to make our standardisation documents better, the DoD provides this form for use in - rotting comments and suggestions for improvements. All users of military standardization documents are invited to provide

sations. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and iled. In block 6, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold along this line)



STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL (See Instructions - Reverse Side)		
1. DOCUMENT NUMBER MIL-STD-105E	2. DOCUMENT TITLE SAMPLING PROCEDURES AND TABLES FOR	INSPECTION BY ATTRIBUTES
3. NAME OF BUBMITTING DRGAN	ZATION	4. TYPE OF ORGANIZATION (Merh one)
A ADDRESS (Struct, City, Stell, ZIP Code)		
5. PROBLEM AREAS		
s. Paragraph Number and Wording:		
s. Hecommenced wording:	-	
c. Resson/Rationale for Recommandation:		
6. HEMARKS	<u></u>	
	· • • .	
74 NAME OF SUBMITTER (Last, FU	al, MIJ - Optional	b. WORK TELEPHONE NUMBER (Include Area
c. MAILING ADDRESS (Street, City, Stew, ZIP Code) - Optional		B. DATE OF SUBMISSION (YYNMDD)
L		

t